[发明专利]一种多物理域特征信息融合方法有效
申请号: | 201110200365.5 | 申请日: | 2011-07-18 |
公开(公告)号: | CN102254184A | 公开(公告)日: | 2011-11-23 |
发明(设计)人: | 胡友民;谢锋云;王琰;王小岑;吴波;程瑶;贾广飞;李明宇;金超 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李佑宏 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 物理 特征 信息 融合 方法 | ||
技术领域
本发明涉及信息处理领域,特别涉及一种多物理域特征信息融合的方法。
背景技术
多物理域特征信息融合是在工程信息处理最重要组成部分,是利用计算机等技术对所有观测信息进行自动分析、综合来完成决策与估计任务。多物理域特征信息融合经常会遇到两类问题,一是由于测量工具的不精确性、信息的不完整性和随机性、以及先验知识的匮乏性而导致的特征信息不确定性问题;二是工程信息处理中的多物理域(如振动、温度、噪声和切削力等)特征信息如何融合问题。
特征信息不确定性是工程建模和多物理域观测过程中不可避免的,要想找到一组能准确描述工程状态及性能的特征参数,建立这组特征参数的识别与预测模型,是一件十分困难的工作。尽管许多研究人员花费了大量时间进行着不断的努力,成效不大。以往对不确定性问题的研究方法,大多通过观测变量的精确概率来描述,只考虑了观测的随机性,而忽略了观测信息的不完整性和先验知识的匮乏性,这显然会减低结果的信任度。近年来,人们尝试用不精确概率去解决这一问题,并开始应用于工程领域,如传感器数据融合、可靠性估计、可靠性最优设计,以及不确定性设计方案等,其不精确区间概率的下界严格小于区间的上界,语义上无法形成闭合,推理和论证复杂,计算难于处理。
多物理域特征信息融合也是工程信息处理中的典型问题,目前的研究方法更多的是针对确定量,针对随机信息和不完整信息的研究较少,其中,比较典型的方法主要有两类:一类是Choi M.J等提出的多尺度高斯变量模型、Chamoin L等提出的蒙特卡罗(Monte Carlo)模拟法,加权平均法、卡尔曼滤波法、多贝叶斯估计法以及D-S证据推理法,这几种方法都是先假定了某种特殊的概率分布,使得观测的随机性和先验知识的匮乏性混淆在一起,从而限制了其应用;另外一类研究是基于隐马尔科夫模型及其相关扩展模型,其中,应用隐马尔科夫模型要解决3个基本问题:评估问题、解码问题以及训练问题,具体实现采用向前向后算法、Viterbi算法以及Baum-Welch算法完成,详见Lawre R.Rabiner的《A tutorial on Hidden Markov Models and selected applications in speech recognition》。隐马尔科夫模型通过易于观测向量序列的观察来描述工程中隐含的信息,以及通过不同物理量的观测向量序列与工程中隐含信息间的耦合关系处理多物理域信息融合问题,计算难于处理,而且隐马尔科夫模型也不能解决信息的不完整性和先验知识的匮乏性所带来的不确定性问题。
在过去的研究中,对多物理域特征信息融合中特征信息不确定性以及特征信息如何融合的常常都是独立的,不能形成一个有机结合体,导致信息处理的可靠性、智能性低。只能解决一个或者一类问题,不能同时解决信息不确定性以及多物理域特征信息融合相结合的问题。
发明内容
本发明的目的是针对现有工程信息处理研究方法的不足,提供一种多物理域特征信息融合方法,既能解决工程中特征信息不确定性问题又能同时解决多物理域特征信息融合问题。
实现本发明的目的所采用的具体技术方案如下:
一种多物理域特征信息融合方法,具体包括如下步骤:
(1)获取特征信息集
通过测量工具获取工程中所需要的先验信息,去除冗余信息,获得优化的特征信息集;
(2)将步骤(1)特征信息集中的每个特征信息值Xi转换成区间形式
考虑测量工具测量过程中及其他的不确定性,通过误差理论把每个特征信息值Xi转换成区间形式,以增加测量的特征信息值的可靠性,其中i为任一特征信息的序号。
(3)求取广义隐马尔科夫初始模型
首先根据工程实际情况,划分工程状态;
然后利用区间化了的特征信息值Xi以及划分的工程状态,用求取隐马尔科夫初始模型类似方法,求取广义隐马尔科夫初始模型中的状态转移概率矩阵A、观测概率矩阵B以及根据检验求取初始状态概率矩阵π,其中,上述所有矩阵中概率用广义区间概率取代,即可获得广义隐马尔科夫初始模型λ=(A,B,π);
其中,广义隐马尔科夫模型是用区间取代隐马尔科夫模型中的特征信息值、用广义区间概率取代隐马尔科夫模型中概率,并与隐马尔科夫有机结合的模型。
广义区间概率的理论基础是广义区间中的Kaucher算法。其区间概率中的上、下界值大小,不受上界值大于下界值限制,上界值小于或者等于下界值都是许可的,语义封闭;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110200365.5/2.html,转载请声明来源钻瓜专利网。
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置