[发明专利]倒V型二氧化硅沟槽结构生长硅基砷化镓材料的方法有效
申请号: | 201110206340.6 | 申请日: | 2011-07-22 |
公开(公告)号: | CN102243994A | 公开(公告)日: | 2011-11-16 |
发明(设计)人: | 周旭亮;于红艳;王宝军;潘教青;王圩 | 申请(专利权)人: | 中国科学院半导体研究所 |
主分类号: | H01L21/205 | 分类号: | H01L21/205;H01L21/336 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 汤保平 |
地址: | 100083 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 二氧化硅 沟槽 结构 生长 硅基砷化镓 材料 方法 | ||
技术领域
本发明涉及半导体技术领域,是将MOCVD和高深宽比沟槽限制技术(Aspect Ratio Trapping,ART)以及倒V形沟槽结合起来生长应用于nMOS的硅基砷化镓材料,特别是指一种倒V型二氧化硅沟槽结构生长硅基砷化镓材料的方法。
背景技术
根据国际半导体产业技术发展蓝图(ITRS2009)的预测,2012年MPU的物理栅长将缩小到22纳米。然而,随着集成电路技术发展到22纳米技术节点及以下时,硅集成电路技术在速度、功耗、集成度、可靠性等方面将受到一系列基本物理问题和工艺技术问题的限制,并且昂贵的生产线建设和制造成本使集成电路产业面临巨大的投资风险,传统的硅CMOS技术采用“缩小尺寸”来实现更小、更快、更廉价的逻辑与存储器件的发展模式已经难以持续。因此,ITRS清楚地指出,“后22纳米”CMOS技术将采用全新的材料、器件结构和集成技术,集成电路技术将在“后22纳米”时代面临重大技术跨越及转型。
III-V族半导体的电子迁移率远大于硅(GaAs、InAs的电子迁移率分别可达到9000cm2/(V·s)、40000cm2/(V·s),而硅的只有1300cm2/(V·s)),它们在低场和高场下都具有优异的电子输运性能,是超高速、低功耗nMOS的理想沟道材料。为了应对集成电路技术所面临的严峻挑战,采用与硅工艺兼容的高迁移率III-V族半导体材料代替硅沟道,以大幅提高逻辑电路的开关速度并实现低功耗工作研究已成为近期全球微电子领域的前言和热点。
在Si衬底上外延高质量的III-V族半导体材料是制备Si基高迁移率nMOS的前提。GaAs是研究较为成熟的III-V族材料,本方法采用GaAs作为III-V的代表来研究外延问题。Si和GaAs的晶格适配较大(4.1%),热适配较大(Si和GaAs的热膨胀系数分别为2.59×10-6K-1,5.75×10-6K-1),因此产生大量的位错。同时,由于极性材料在非极性衬底上外延以及衬底台阶的存在,外延层中会产生大量的反相畴(Anti-phase domain,APD),反相畴边界(Anti-phase boundary,APB)是载流子的散射和复合中心,同时在禁带引入缺陷能级。这些位错和反相畴边界会一直延伸到外延层的表面,严重影响了外延层的质量。这样,Si基III-V族材料的生长必须解决这两个问题。
本方法中采用叔丁基二氢砷和三乙基镓代替通常采用的砷烷和三甲基镓,降低生长温度,降低生长速率,促进APB的自消除效应的产生;同时,采用高深宽比限制技术,利用AR>1的SiO2沟槽来限制住适配位错和APB。基二氢砷和三乙基镓的分解温度远低于砷烷和三甲基镓,因此可以在较低的温度下进行材料的外延生长,并且,较低的温度可以限制Si和GaAs界面的互扩散问题。采用MOCVD方法,在SiO2沟槽中,外延GaAs是沿着{311}和{111}晶族组成的晶面(平行于沟槽的方向)进行生长的,Si/GaAs界面处的失配位错,APD一般是顺沿着外延层的生长方向延伸的,并且在本方法中运用倒V形沟槽,当这些失配位错和APD遇到SiO2壁时就受到更有效的阻挡,不再延伸到顶层的GaAs。
发明内容
本发明的目的在于,提供一种倒V型二氧化硅沟槽结构生长硅基砷化镓材料的方法,该方法可制备高质量Si基GaAs材料,为Si基高迁移率nMOS提供材料基础,该类型nMOS可以与传统硅工艺兼容,极大提高器件,降低功耗。该方法中通过改变原料并结合高深宽比沟槽限制技术,抑制了GaAs/Si界面适配位错和APD向外延层的延伸。
本发明提供一种倒V型二氧化硅沟槽结构生长硅基砷化镓材料的方法,包括以下步骤:
步骤1:在硅衬底上生长二氧化硅层;
步骤2:采用传统光刻和RIE方法在二氧化硅层上沿着硅衬底的<110>方向刻蚀出沟槽,刻蚀深度等于二氧化硅层的厚度;
步骤3:以硅烷为原料采用VPE法刻蚀在沟槽内的硅衬底上形成倒V形的硅缓冲层;
步骤4:分别用piranha、SC2、HF和去离子水,清洗沟槽底部的硅缓冲层;
步骤5:采用低压MOCVD的方法,先在沟槽内生长GaAs缓冲层,然后在沟槽内的GaAs缓冲层上生长GaAs顶层;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院半导体研究所,未经中国科学院半导体研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110206340.6/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
H01L 半导体器件;其他类目中不包括的电固体器件
H01L21-00 专门适用于制造或处理半导体或固体器件或其部件的方法或设备
H01L21-02 .半导体器件或其部件的制造或处理
H01L21-64 .非专门适用于包含在H01L 31/00至H01L 51/00各组的单个器件所使用的除半导体器件之外的固体器件或其部件的制造或处理
H01L21-66 .在制造或处理过程中的测试或测量
H01L21-67 .专门适用于在制造或处理过程中处理半导体或电固体器件的装置;专门适合于在半导体或电固体器件或部件的制造或处理过程中处理晶片的装置
H01L21-70 .由在一共用基片内或其上形成的多个固态组件或集成电路组成的器件或其部件的制造或处理;集成电路器件或其特殊部件的制造