[发明专利]基于联合相似性的非局部均值去噪方法有效
申请号: | 201110282126.9 | 申请日: | 2011-09-21 |
公开(公告)号: | CN102298774A | 公开(公告)日: | 2011-12-28 |
发明(设计)人: | 钟桦;焦李成;韩攀攀;王桂婷;侯彪;王爽;张小华;田小林 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 联合 相似性 局部 均值 方法 | ||
技术领域
本发明属于图像处理技术领域,涉及一种基于联合相似性的非局部均值去噪方法,可用于对自然图像的去噪处理。
背景技术
图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带有噪声的。噪声恶化了图像质量,使图像模糊甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,对图像进行边缘增强也会同时增强噪声。因此在去除噪声的同时,要求最小限度的减小图像的信息,保持图像的原貌。
传统的去噪方法大致可以分为两类,一类是基于空域的方法,一类是基于变换域的方法。空域去噪方法中比较经典的方法包括高斯滤波,中值滤波,双边滤波等。它们的共同特点就是利用局部窗口内像素灰度值的连续性来对当前像素进行灰度调整。这些方法大都在去除噪声的同时模糊了图像的细节信息,例如图像的边缘,纹理等。
由于自然图像,特别是纹理图像所含信息具有一定的冗余性,Buades等人提出了一种非局部均值的去噪方法。该方法以当前像素为中心取大小一定的窗口,在整幅图像内寻找与其具有相似结构的窗口,以窗口之间的相似度为权值对当前像素的灰度值进行调整。由于这种方法在去噪领域良好的性能,自提出以来迅速引起众多学者的广泛关注,但是它仍然存在以下问题:1:算法复杂性比较大;2:权值计算准确性欠佳;3:图像的边缘与细节仍存在一定程度的模糊。
非局部均值算法里两个像素点之间的相似性是通过以它们两者为中心的块得到,即用块的相似性表示点的相似性,首先,计算两像素点对应块之间的距离;然后,根据不同的权值函数得到两像素点之间的权值,权值越大,两像素点越相似。NL方法中对应的权值函数是指数形式,其表示两像素点对应块之间的欧氏距离越小,则两像素点之间的权值越大,这是从实际物理意义上考虑的,但这种指数形式的权值函数存在参数难以自适应以及相似点之间权值分布不稳定的缺陷;BNL方法中认为两相似点对应块之间的欧氏距离经过修正后服从卡方分布,并将这种卡方分布转变成高斯分布,设计了一种基于概率分布的权值函数,但是这种权值函数在两相似点之间距离很小的时候权值也很小,这在实际物理意义下是错误的。
综上,无论是NL方法还是BNL方法,它们的权值函数都存在缺陷,这导致它们对像素点之间的相似性计算并不精确,使图像像素恢复值偏离其真实值过大。
发明内容
本发明的目的在于克服上述已有技术的不足,提出了基于联合相似性的非局部均值去噪方法,通过推导并设计出一种新的权值函数,使得相似点相似性计算更加精确,进一步提高图像去噪效果。
实现本发明目的的技术方案包括如下步骤:
(1)对输入的含噪自然图像中待修正像素点xi的搜寻区域像素点xj,进行块的均值和方差预选取,得到像素点xi的相似集合,i从1到I×I,I×I表示输入图像的大小,j从1到N×N,N×N表示以待修正像素点xi为中心的搜寻区域的大小;
(2)对满足预选取条件的点,计算待修正像素点与其相似集合内像素点之间的欧氏距离,并对欧氏距离修正,得到距离d(v(xi),v(xj)),该距离服从高斯分布,v(xi)是以xi为中心的M×M大小的块,v(xj)是以xj为中心的M×M大小的块;
(3)根据上述距离d(v(xi),v(xj)),利用如下公式计算计算待修正像素点xi与其相似集合内点xj之间的权值w(v(xi),v(xj)):
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110282126.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种光电子器件的封装方法
- 下一篇:一种地板连接结构