[发明专利]基于NJW谱聚类标记的图像分割方法有效
申请号: | 201110346346.3 | 申请日: | 2011-11-04 |
公开(公告)号: | CN102346851A | 公开(公告)日: | 2012-02-08 |
发明(设计)人: | 缑水平;焦李成;杨静瑜;李阳阳;张佳;徐聪;杨淑媛;庄雄 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 njw 谱聚类 标记 图像 分割 方法 | ||
技术领域
本发明属于图像处理技术领域,涉及图像分割,可用于对纹理图像和SAR图像进行目标检测和目标识别。
背景技术
聚类是指把一个没有类别标记的样本集按某种准则划分成若干个子集或类别,使相似的样本尽可能归为一类,而不相似的样本尽量划分到不同的类中。聚类分析是多元统计分析的一种,也是非监督模式识别的一个重要分支。作为一种无监督分类方法,聚类分析已经被广泛地应用于模式识别、数据挖掘、计算机视觉和模糊控制等许多领域。传统的聚类算法,如k-means算法,EM算法等都是建立在凸球形的样本空间上,但当样本空间不为凸时,算法会陷入局部最优。
谱聚类方法能在任意形状的样本空间上聚类,且收敛于全局最优解。该算法具有实现简单,与维数无关,以及全局寻优的良好特性,因此得到了越来越广泛的应用。谱聚类方法仅仅考虑所有样本的权值矩阵,也叫相似性矩阵,它将聚类问题转化为无向图划分问题。但是,谱聚类方法需要计算一个n×n权值矩阵的主要特征向量,n是样本个数。这对于大规模数据而言,计算量是相当大的,这也成为了谱聚类方法的瓶颈问题。
Fowlkes等人提出了基于NJW逼近的谱聚类方法。该方法首先从所有样本中随机选取一个样本子集作为代表求解特征问题,然后再将其特征向量扩展为整个样本集合权值矩阵的特征向量。然而选取结果对聚类影响很大,聚类结果表现出不稳定性。后来有人提出基于k均值NJW谱聚类算法,在进行NJW逼近前用经典k-means聚类替代了随机采样,由于采样的点更具代表性,使聚类效果优于NJW的随机采样。k均值NJW谱聚类算法虽然实现简单,应用于图像可以大大减小计算复杂度,但k均值算法本身就对初始中心敏感,不同的初始值可能得到不同的聚类结果,使图像分割结果很不稳定,随机波动大。
发明内容
本发明的目的在于克服上述已有问题的缺点,提出了一种基于NJW谱聚类标记的图像分割方法,充分有效的利用了NJW谱聚类算法所得的具有代表性样本的较准确标签,并利用其对剩余样本进行指导学习,以得到稳定的图像分割结果。为实现上述目的,本发明的具体实现步骤包括如下:
(1)使用灰度共生矩阵对待分割的图像进行特征提取,并将提取的特征数据归一化到[0,1]之间,以去除数据间量级的影响;
(2)用k-means算法将归一化后的特征数据聚为m类,并将与聚类中心最近邻的特征数据作为采样点得到采样子集S={s1,...,si,...,sm},i=1,...,m,m取100;
(3)利用NJW谱聚类算法,对采样子集S进行聚类,得到采样子集S的标签;
(4)对采样子集S和对应的标签进行学习,训练一个支撑矢量机SVM分类器;
(5)用所得的SVM分类器对所有特征数据进行测试,得到最终的图像分割结果。
本发明由于用k-means算法替代了随机采样,使采样的子集更具代表性,并充分有效的利用了NJW谱聚类算法得到采样子集的较准确标签;同时由于本发明利用采样子集对剩余数据进行指导学习,使图像分割结果有明显提高。
附图说明
图1是本发明基于NJW谱聚类标记的图像分割方法流程图;
图2是用本发明与现有两种谱聚类方法对图2(a)所示纹理图像仿真分割结果;
图3是用本发明与现有两种谱聚类方法对图3(a)所示纹理图像仿真分割结果;
图4是用本发明与现有两种谱聚类方法对图4(a)所示纹理图像仿真分割结果;
图5是用本发明与现有两种谱聚类方法对图5(a)所示SAR图像仿真分割结果;
图6是用本发明与现有两种谱聚类方法对图6(a)所示SAR图像仿真分割结果;
图7是用本发明与现有两种谱聚类方法对图7(a)所示SAR图像仿真分割结果。
具体实施方式
参照图1,本发明的具体实施过程如下:
步骤1.使用待分割图像的灰度共生矩阵对图像进行特征提取,并将提取的特征数据归一化,以去除数据间量级的影响。
(1a)对待分割的图像生成灰度共生矩阵P,窗口大小取16;
(1b)在0°,45°,90°和135°这4个方向上,从图像的灰度共生矩阵P中抽取以下三种二次统计量:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110346346.3/2.html,转载请声明来源钻瓜专利网。