1.一种基于角速度的欧拉角拉盖尔近似输出方法,其特征在于包括以下步骤:
步骤1、(a)根据欧拉方程:
式中:分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为
p(t)=[p0 p1 L pn-1 pn][ξ0(t) ξ1(t) L ξn-1(t) ξn(t)]T
q(t)=[q0 q1 L qn-1 qn][ξ0(t) ξ1(t) L ξn-1(t) ξn(t)]T
r(t)=[r0 r1 L rn-1 rn][ξ0(t) ξ1(t) L ξn-1(t) ξn(t)]T
其中
ξ0(t)=1ξ1(t)=1-tξ2(t)=1-2t+0.5t2M(i+1)ξi+1(t)=(1+2i-t)ξi(t)-iξi-1(t),i=2,3,L,n-1]]>
为拉盖尔正交多项式的递推形式,T为采样周期,全文符号相同;
(b)俯仰角的时间更新求解式为:
式中:
a1=1+p0p1Lpn-1pn∫kT(k+1)T[ξ(t)ξT(t)]dtHTp0p1Lpn-1pnT]]>
+q0q1Lqn-1qn∫kT(k+1)T[ξ(t)ξT(t)]dtHTq0q1Lqn-1qnT]]>
+r0r1Lrn-1rn∫kT(k+1)T[ξ(t)ξT(t)]dtHTr0r1Lrn-1rnT]]>
-p0p1Lpn-1pnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T.]]>
ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTp0p1Lpn-1pnT]]>
-q0q1Lqn-1qnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T.]]>
ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTq0q1Lqn-1qnT]]>
-r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T.]]>
ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTr0r1Lrn-1rnT]]>
+0.25{p0p1Lpn-1pnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T}2]]>
+0.25{q0q1Lqn-1qnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T}2]]>
-0.25{r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T}2]]>
a2=q0q1Lqn-1qnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
-0.5r0r1Lrn-1rn∫kT(k+1)T[ξ(t)ξT(t)]dtHTp0p1Lpn-1pnT]]>
+0.5r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
·ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTp0p1Lpn-1pnT]]>
a3=r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T]]>
+0.5q0q1Lqn-1qn∫kT(k+1)T[ξ(t)ξT(t)]dtHTp0p1Lpn-1pnT]]>
-0.5q0q1Lqn-1qnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
·ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTp0p1Lpn-1pnT]]>
H=-100L000-1-10L000001L000000L000MMMOMMM000L01-1000L001]]>
当p,q,r的展开式最高次项n为奇数时,m=4,6,K,n+1,高次项n为偶数时m=5,7,K,n+1;
2.(a)在已知俯仰角的情况下,滚转角的时间更新求解式为:
其中
a4=1+p0p1Lpn-1pn∫kT(k+1)T[ξ(t)ξT(t)]dtHTp0p1Lpn-1pnT]]>
+q0q1Lqn-1qn∫kT(k+1)T[ξ(t)ξT(t)]dtHTq0q1Lqn-1qnT]]>
+r0r1Lrn-1rn∫kT(k+1)T[ξ(t)ξT(t)]dtHTr0r1Lrn-1rnT]]>
-p0p1Lpn-1pnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T.]]>
ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTp0p1Lpn-1pnT]]>
-q0q1Lqn-1qnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T.]]>
ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTq0q1Lqn-1qnT]]>
-r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T.]]>
ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTr0r1Lrn-1rnT]]>
+0.25{p0p1Lpn-1pnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T}2]]>
-0.25{r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T}2]]>
-0.25{q0q1Lqn-1qnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T}2]]>
a5=p0p1Lpn-1pnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
+0.5r0r1Lrn-1rn∫kT(k+1)T[ξ(t)ξT(t)]dtHTq0q1Lqn-1qnT]]>
-0.5r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
·ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTq0q1Lqn-1qnT]]>
a6=r0r1Lrn-1rnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
-0.5p0p1Lpn-1pn∫kT(k+1)T[ξ(t)ξT(t)]dtHTq0q1Lqn-1qnT]]>
+0.5p0p1Lpn-1pnHξ0(t)ξ1(t)Lξn(t)ξn+1(t)T|kT(k+1)T]]>
·ξ0(t)ξ1(t)Lξn(t)ξn+1(t)kTHTq0q1Lqn-1qnT]]>
(b)在俯仰角、滚转角已知情况下,偏航角的求解式为:
ψ(t)=ψ(kT)+∫kTt[b1(t)+b2(t)]dt]]>
式中: