[实用新型]小样本贫信息下的烧结矿化学成分预测与智能控制系统有效

专利信息
申请号: 201120366462.7 申请日: 2011-09-29
公开(公告)号: CN202351625U 公开(公告)日: 2012-07-25
发明(设计)人: 王爱民;宋强;李华 申请(专利权)人: 王爱民;宋强;李华
主分类号: G05B13/04 分类号: G05B13/04;C22B1/00
代理公司: 北京同辉知识产权代理事务所(普通合伙) 11357 代理人: 王道川
地址: 455000 河南省安*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 样本 信息 烧结 化学成分 预测 智能 控制系统
【说明书】:

技术领域

实用新型涉及冶金领域的烧结过程领域的自动控制,特别涉及一种小样本贫信息下的烧结矿化学成分预测与智能控制系统。 

背景技术

烧结矿化学成分波动较大是高炉原料存在的一个十分突出问题。目前我国烧结矿化学成分主要是通过控制原料系统来控制的,80年代以来,我国不少厂家建立了混匀料场,取得一定效果,但只能为烧结厂提供7~10天的稳定成分;对配料进行了微机定值自动控制各原料的给料量,但尚未考虑最优控制问题,而且由于各种烧结矿原料化学成分随机波动,烧结产品取样、分析存在相当长的时间延迟、使得烧结矿化学成分的稳定控制相当困难。国外在80年代提出新的控制烧结矿化学成分的方法——用自回归和多元回归模型预测和控制烧结矿化学成分(CaO,SiO2,MgO,FeO)系统,日本住友金属公司小仓厂自1982年3月以来在3号烧结机上使用了该系统,1985年12月起,和歌山4号烧结机也使用了此控制系统,都取得了较好的操作效果。80年代起,国外也将预测模型应用到烧结生产其他方面的控制中,如英格兰钢铁公司Redcar烧结厂预测废气温度控制机速,用自适应模型预测成品机械强度指数和FeO含量都取得一定效果。 

在我国,关于烧结矿化学成分超前预测也有不少报道。随着技术的不断成熟,人工智能技术在国内烧结生产中被大量采用,主要用于工艺参数的优化和烧结矿化学成分与产质量的预报。 

北京科技大学张舒,高为民应用误差反向传播方式建立了烧结矿性能指标预测的经网络模型,并用实际烧结生产数据对模型进行了训练,训练后的模型可以对烧结过程进行分析,并可对烧结矿的FeO含量和烧结矿转鼓指数进行预测。 

东北大学郭文军,何力本利用前馈神经网络,建立了烧结矿化学成分超前预报的模型;通过对现场实际运行数据分析表明,预报模型具有良了的预报结果和实际应用前景。 

邵贤强,邱道尹针对烧结过程生产实际,运用神经网络中的BP学习算法设计了分类器,用于在线推断烧结矿的质量,为了加快BP学习算法的收敛速度,采用了自适应变步长学习算法,实验结果表明,由此建立的烧结过程神经网络质量预报模型,预报正确率高,具有很好的泛化能力。 

中南工业大学王雅琳、桂卫华等人针对工业生产过程的复杂性和时变性,提出一种用于工业生产过程模建的自适应监督式分布神经网络(SDNN),将SDNN网络与传统建模方法相结合,应用于铅锌烧结过程的烧结块成分预测。工业应用结果表明,SDNN模型具有较高的预测精度。与传统建模方法有机结合能更好地描述工业生产过程。 

东北大学姜宏洲、李万新等人开发了烧结矿FeO含量智能检测仪。检测仪应用图像处理与神经网络技术,依照烧结看火工对烧结矿FeO含量的判断方法,用CCD摄像机采集烧结机尾断面图像,对所采集的图像进行实时处理,最后给出相应的FeO含量等级。 

烧结矿化学成分的稳定性已越来越成为整个铁前系统能否保持良好运行的关键。钢厂对烧结矿的检验以现有的检验方式和装备已无法满足生产工艺 的需要,造成检验周期长、检验结果严重滞后。尤其是产品质量异常时,既不能及时调整烧结生产又无法及时指导高炉生产,而且经调研发现,国内多数企业均存在类似问题。这种状况已经严重干扰了烧结生产,对炼铁生产也造成了不可小视的损失,在烧结厂开发出烧结矿化学成分的预测模型和预测系统已是当务之急。因此,迫切需要开发功能优良的烧结过程烧结矿化学成分预测系统,使烧结过程控制水平进入一个新的阶段,尽快接近或达到同行业国际先进水平,这样才能带来巨大的经济效益。 

实用新型内容

针对现有技术中存在的不足,本实用新型的目的在于提供一种基于灰熵-支持向量机算法的小样本贫信息下的烧结矿化学成分预测与智能控制系统。 

本实用新型的技术方案是这样实现的: 

小样本贫信息下的烧结矿化学成分预测与智能控制系统,数据采集模块采集数据,所述数据采集模块采集到的数据经处理后传输到智能控制模块。 

小样本贫信息下的烧结矿化学成分预测与智能控制系统,包括:数据采集模块、数据归一化模块、灰熵模块、支持向量机模块、组合模块、推断模块、烧结矿化学成分预测模块和智能控制模块;所述数据采集模块的输出与所述数据归一化模块的输入连接;所述数据归一化模块的输出与所述灰熵模块的输入连接;所述灰熵模块的输出与所述支持向量机模块的输入连接;所述支持向量机模块的输出与所述组合模块的输入连接;所述组合模块的输出和所述推断模块的输出分别与所述烧结矿化学成分预测模块的输入连接;所述烧结矿化学成分预测模块的输出与所述智能控制模块的输入连接。 

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于王爱民;宋强;李华,未经王爱民;宋强;李华许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201120366462.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top