[发明专利]一种基于改进的自适应形态滤波的非稳态信号检测方法有效

专利信息
申请号: 201210135037.6 申请日: 2012-05-03
公开(公告)号: CN102680080A 公开(公告)日: 2012-09-19
发明(设计)人: 沈长青;孔凡让 申请(专利权)人: 中国科学技术大学
主分类号: G01H17/00 分类号: G01H17/00
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 杨学明;顾炜
地址: 230026 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 改进 自适应 形态 滤波 稳态 信号 检测 方法
【说明书】:

技术领域

发明涉及一种非稳态信号的分析检测方法,具体涉及一种自适应形态滤波的非稳态信号检测方法,用于对旋转机械振动信号中反映故障特征的非稳态信号进行检测。

背景技术

对于反映机械设备故障的信号中非稳态成分的检测,在机械设备的故障诊断、生物医学信号的检测等领域具有广泛的应用。常见的非稳态成分检测方法是在时域信号中观察是否存在非稳态成分,但是由于检测过程中不可避免的会混入噪声,其中表征故障的非稳态成分亦会被噪声污染,直接观察的方式准确性和效率都很低。另外一种常用的方法是通过频域分析信号中的周期特征,但是对于信号中持续时间较短的非稳态信号,在频谱中表现为较小的幅值,甚至同样被噪声淹没,因此通过频域分析检测往往不能得到显著的特征。此外,对信号进行滤波分析也是去除信号中噪声干扰,从而提取非稳态成分的一种有效方法,但是其效果受设计的滤波器的关键参数,如截止频率、带宽、中心频率等因素影响很大。随着研究的深入,在实践中,常用的检测方法是对信号进行小波包层层分解,然后对小波节点信号进行解调,分析频域特征,进而得到信号中非平稳成分的周期,但这些技术存在需要先验知识或者耗时长的缺点。因此,总体来说现有的检测方法存在对旋转设备故障判断的效率低和准确性不高的缺点。

发明内容

本发明的技术解决问题:克服现有技术的不足,提供一种基于改进的自适应形态滤波的非稳态信号检测方法,提高了旋转设备故障判断的效率和准确性。

本发明技术解决方案:一种基于改进的自适应形态滤波的非稳态信号检测方法。在待检测设备的壳体上安装加速度传感器,检测设备的振动加速度信号,作为检测信号。步骤如下:

(1)绘制原始信号的时域图,找出信号各局部极大值的位置,并计算其在时域图中与时间轴围成的轮廓区域面积为参考面积:

Sref=Σi=1k-1Slocal_i]]>

式中,Sref为原始信号极值与时间轴围成的轮廓区域面积,Slocal_i=0.5×lengthi×(maxi+maxi+1)为相邻两个局部极值与时间轴围成的轮廓区域面积,k为局部极值个数,i=1,2,...k-1,lengthi为局部极值间的距离,maxi为第i个局部极值。该步骤以信号局部极值与时间轴围成的轮廓区域面积为形态滤波结构元素设计参考标准,力求通过保留极值信号来实现移除尽可能多的噪声信号,保留尽可能多故障信号;

(2)设定结构元素基本步长step,step为信号采样周期,即采样频率倒数,依次增加扫描各倍率长度,从1×step,2×step,…,m×step(m为采样周期倍数,取值范围为1-30)分别对原始信号进行形态滤波结果与时间轴围成的轮廓区域面积,并与步骤(1)中所得参考面积对比,找出两者面积最接近情况下采用的结构元素的步长,定为最佳结构元素;

(3)根据步骤(2)中得到的最佳结构元素长度,根据下述计算公式利用闭-开算子对信号进行形态滤波并分析频谱:

上式中,Θ,ο和·分别表示腐蚀算子、膨胀算子、开算子和闭算子,其中,基本腐蚀算子、膨胀算子、开算子、闭算子分别表达如下:

腐蚀算子:

(fΘg)(n)=min[f(n+m)-g(m)]

膨胀算子:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210135037.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top