[发明专利]一种基于机器视觉的人体跌倒检测方法无效

专利信息
申请号: 201210167580.4 申请日: 2012-05-25
公开(公告)号: CN102722721A 公开(公告)日: 2012-10-10
发明(设计)人: 马昕;王海波;周民刚;李贻斌 申请(专利权)人: 山东大学
主分类号: G06K9/62 分类号: G06K9/62;G06T7/00
代理公司: 济南金迪知识产权代理有限公司 37219 代理人: 宁钦亮
地址: 250100 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 机器 视觉 人体 跌倒 检测 方法
【说明书】:

技术领域

发明涉及一种利用机器视觉进行人体跌倒检测的方法,属于模式识别领域。

背景技术

21世纪被称为“银发世纪”,人口的老龄化正成为一种全球性的发展趋势。近些年来,随着社会经济的发展、居住方式的变化、家庭结构的小型化等因素,老人家庭空巢率正在不断提高。预期到2030年空巢老年人家庭的比例将达到90%,届时我国老年人家庭将严重空巢化。对于老年人,跌倒是一主要的健康问题。跌倒会导致严重的伤痛、长期行动不便。需要住院治疗的老人中大约有50%是由于跌倒的原因。而且,随着年龄的增长,跌倒导致的死亡率急剧增大,在65岁及以上年龄的女性和男性人群中,57%和36%的死亡是由于跌倒引起的。

先进的计算机技术和通信技术为改善人的生活质量,特别是提高老年人的生活提供了有效途径。基于机器视觉的跌倒检测系统,在不影响老人日常活动的情况下,一方面可以减轻老年人的心理负担,让老年人不再因为害怕跌倒而减少活动,提高老年人的生活的质量;另一方面可以减轻社会和子女的压力,对构建以人为本的和谐社会有着非常积极的意义。

针对基于视频图像的人体跌倒行为,研究者们提出了很多检测方法。2004年《Proceedings of International Conference on Pattern Recognition》(模式识别国际会议)在323-326发表的《Activity summarisation and fall detection in a supportive home environment》(家居环境中的活动概述和跌倒检测)定义已知环境中的椅子、床等区域为正常的不活动区域,如果检测到人在这些正常的不活动区域以外处于不活动状态,就认为发生了跌倒,这种算法只能应用于已知固定环境,在家具搬动时,需要重新对环境进行定义。2006年《Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society》(IEEE医药和生物工程国际会议论文集)在6384-6387页发表的《Monocular 3d head tracking to detect falls of elderly people》(基于单目摄像头的3D头部跟踪实现老年人跌倒检测)认为头部的移动跟人体跌倒有很大的相关性,提出利用头部的三维运动分析算法进行人体跌倒检测,这种方法需要检测、定位和跟踪头部或面部,耗费时间多。目前,用于人体跌倒检测的最普遍特征是身体形状的变化。2007年《Proceedings of International Conference on Pattern Recognition and Machine Intelligence》(模式识别与机器智能国际会议论文集)发表的《Automatic detection of human fall in video》(视频中人体跌倒自动检测)用边界盒子近似表示人体形状,通过计算边界盒子的纵横比和倾斜角进行人体跌倒检测。由于人体跌倒发生的时间较短,捕获人体形状的迅速变化显得很有意义。2006年《Proceedings of IEEE International Conference on Signal Processing andCommunications Applications》(IEEE信号处理和通信应用国际会议论文集)在1-4页发表的《HMM based falling person detection using both audio and video》(利用声频和音频信息实现基于隐马尔科夫模型的人体跌倒检测)提取了盒子高度和盒子宽度之比的小波系数用于人体跌倒检测。与边界盒子相比,椭圆能够更精确地近似人体形状。2005年《Proceedings of IEEE Workshop on Multimedia Signal Processing》(IEEE多媒体信号处理研讨会议论文集)在1-4页发表的《Human behavior analysis using deformable triangulations》(基于可变三角形的人体行为分析)提出利用人体骨架结构进行人体跌倒检测。2010年《Proceedings of IEEE International Conference on Image Processing》(IEEE图像处理国际会议论文集)在3485-3488发表的《A hybrid human fall detection scheme》(混杂人体跌倒检测方法)提出结合形状轮廓变化和骨架信息对人体跌倒进行检测,性能要优于使用单一特征的方法。2007年《Expert Systems》(专家系统)在24(5):334-345发表的《A multi-camera vision system for fall detection and alarm generation》(一种用于跌倒检测和报警的多摄像机视觉系统)利用分割出人体形状后的映射直方图进行跌倒检测。2008年《Proceedings of International Conference on Computer and Information Technology》(计算机和信息技术国际会议论文集)在219-224发表的《Intelligent video surveillance for monitoring fall detection of elderly in home environments》(用于家居环境中老年人跌倒检测的智能视频监控系统)结合了形状映射直方图和头部位置的变化进行跌倒检测。2011年《Proceedings of International Conference on Intelligent Environments》(国际智能环境会议论文集)在40-46页发表的《A monocular view-invariant fall detection system for the elderly in assisted home environments》(用于家庭护理环境具有视角不变性的人体跌倒检测单目视觉系统)指出用为了使得跌倒检测具有视觉不变性,应用单目摄像机往往需要完整的人体姿态模型。2009年《Proceedings of International Conference on Advanced Communication Technology》(先进通讯技术国际会议论文集)在2308-2312页发表的《Multiple object tracking for fall detection in real-time surveillance system》(实时监控系统中用于人体跌倒检测的多目标跟踪)指出当跟踪多个跌倒事件时,单目摄像机解决方案会受到遮挡限制。2011年《IEEE Transactions on Information Technology in Biomedicine》(IEEE生物医学中的信息技术期刊)在15(2):290-300页发表的《Fall detection with multiple cameras:An occlusion-resistant method based on 3-d silhouette vertical distribution》(利用多摄像机进行跌倒检测:一种基于3D轮廓垂直分布的抗遮挡方法)表明用多个摄像机能够获得视角不变性。2011年《Proceedings of International Conference on Digital Signal Processing》(数字信号处理国际会议论文集)在1-6页发表的《Fall detection for the elderly in a smart room by using an enhanced one class support vector machine》(利用加强的一类SVM实现智能室内环境的老年人跌倒检测)融合了多个摄像机获得的人体中心位置和方位的时间变化,进行跌倒检测,需要对多个摄像机进行耗时的校正。2010年《Proceedings of IEEE International Symposium on Industrial Electronics》(IEEE工业电子国际研讨会论文集)在2301-2306页发表的《An automated active vision system for fall detection and posture analysis in ambient assisted living applications》(用于辅助家居生活跌倒检测和姿态分析的主动视觉系统)计算人体3D中心距离地板平面的高度和人体躯干的方向进行跌倒检测。2011年《Proceedings of International Conference on Pervasive Computing Technologies for Healthcare》(用于卫生保健的普适计算技术国际会议论文集)在71-77页发表的《Evaluation of an inexpensive depth camera for passive in-home fall risk assessment》(用于家居环境跌倒检测的低成本深度摄像机)使用微软Kinect深度摄像机提取行走速度、跨步时间和长度,进行跌倒检测。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210167580.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top