[发明专利]一种基于深度信息的手势识别方法有效

专利信息
申请号: 201210242290.1 申请日: 2012-07-13
公开(公告)号: CN102789568A 公开(公告)日: 2012-11-21
发明(设计)人: 尚凌辉;张兆生;贺磊盈;余天明;高勇 申请(专利权)人: 浙江捷尚视觉科技有限公司
主分类号: G06K7/00 分类号: G06K7/00
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 杜军
地址: 310013 浙江省杭州市*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 信息 手势 识别 方法
【权利要求书】:

1.一种基于深度信息的手势识别方法,其特征在于该方法包括以下步骤:

步骤1:从可输出深度信息的双目摄像机中获取实时的深度图像,对深度图像使用混合高斯的背景建模方法获得背景图像;

步骤2:利用背景图像和当前图像作差分,检测出前景区域;

步骤3:利用双背景更新方法对建立的背景图像进行更新;

步骤4:通过统计方法学习人体形态的模型,并根据人体模型对检测出的区域进行分割,以提取出独立的人体区域;

步骤5:通过统计方法学习手部模型的分类器,在每个独立的人体区域上检测出手部区域、轮廓信息;若能够检测出手部区域,则执行步骤6,若检测不到手部区域,则跳转至步骤1;

步骤6:通过手部的运动状态利用自回归模型对手部运动进行预测,基于预测位置,以手部区域的深度信息为特征,利用面积加权均值偏移方法跟踪手部,获取手部跟踪的运动轨迹;

步骤7:利用隐马尔科夫模型对运动轨迹进行建模,从而识别出手势;

所述的手势包括水平方向的单手运动、水平方向的双手运动、垂直方向的双手运动和单个阿拉伯数字单手绘制运动。

2.根据权利要求1所述的一种基于深度信息的手势识别方法,其特征在于:步骤1中的混合高斯方法采用三个高斯核。

3.根据权利要求1所述的一种基于深度信息的手势识别方法,其特征在于:步骤4具体是:收集人体样本,采用随机森林分类器学习出人体形态的模型;

在实时处理时,首先对前景区域进行垂直投影,得到投影直方图;统计投影直方图,估计出人体的数目和位置;

然后利用该位置和数目作为初始,基于人体形态的模型、占用前景的概率和未占用前景的概率作为约束,利用马尔科夫链蒙特卡洛方法搜索出最优的人体数目和位置,以确定独立的人体区域。

4.根据权利要求1所述的一种基于深度信息的手势识别方法,其特征在于:步骤5中检测手部区域的具体方法为:

设待定位的手部自然伸展且位于身体之前,因此在深度图像上手部的视差大于身体且在已知的范围内,通过收集人体样本,并获取对应的深度图,采用随机森林分类器学习出人体与手部视差的分布概率以用于从深度图上分割出手部区域。

5.根据权利要求4所述的一种基于深度信息的手势识别方法,其特征在于:根据手臂与手的连贯性和人体的对称性可定位出左右手的位置,且有效滤除其它接近的运动物体或其它人体的手部。

6.根据权利要求1所述的一种基于深度信息的手势识别方法,其特征在于:步骤6中的自回归模型采用三次恒加速多项式,利用该模型对手势运动进行预测,基于预测的位置进行跟踪搜索出最佳位置,并更新目标轨迹,以修正预测误差。

7.根据权利要求1所述的一种基于深度信息的手势识别方法,其特征在于:所述的隐马尔科夫模型建立过程中采用Baum-Welch算法进行训练,模型中状态的长度为5。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江捷尚视觉科技有限公司,未经浙江捷尚视觉科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210242290.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top