[发明专利]一种双多晶双应变混合晶面Si基BiCMOS集成器件及制备方法有效
申请号: | 201210244314.7 | 申请日: | 2012-07-16 |
公开(公告)号: | CN102738161A | 公开(公告)日: | 2012-10-17 |
发明(设计)人: | 张鹤鸣;吕懿;胡辉勇;王海栋;宋建军;宣荣喜;舒斌;郝跃 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | H01L27/06 | 分类号: | H01L27/06;H01L21/8249;H01L21/28 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 710065 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 多晶 应变 混合 si bicmos 集成 器件 制备 方法 | ||
1.一种双多晶双应变混合晶面Si基BiCMOS集成器件,其特征在于,NMOS器件和PMOS器件均为应变Si MOS器件,双极器件为双多晶SiGe HBT。
2.根据权利要求1所述的双多晶双应变混合晶面Si基BiCMOS集成器件,其特征在于,NMOS器件的导电沟道为应变Si材料,NMOS器件的导电沟道为张应变Si材料,NMOS器件的导电沟道为平面沟道。
3.根据权利要求1所述的双多晶双应变混合晶面Si基BiCMOS集成器件,其特征在于,PMOS器件的导电沟道为应变Si材料,PMOS器件的导电沟道为压应变Si材料,PMOS器件的导电沟道为垂直沟道。
4.根据权利要求1所述的双多晶双应变混合晶面Si基BiCMOS集成器件,其特征在于,NMOS器件制备在晶面为(100)的SOI衬底上,PMOS器件制备在晶面为(110)的衬底上。
5.根据权利要求1所述的双多晶双应变混合晶面Si基BiCMOS集成器件,其特征在于,SiGe HBT器件的基区为应变SiGe材料。
6.根据权利要求1所述的双多晶双应变混合晶面Si基BiCMOS集成器件,其特征在于,SiGe HBT器件的发射极和基极采用多晶硅材料。
7.一种双多晶双应变混合晶面Si基BiCMOS集成器件的制备方法,其特征在于,包括如下步骤:
第一步、选取两片N型掺杂的Si片,其中一片晶面为(110),一片晶面为(100),两片掺杂浓度均为1~5×1015cm-3,对两片Si片表面进行氧化,氧化层厚度为0.5~1μm;将晶面为(100)的一片作为上层的基体材料,并在该基体材料中注入氢,将晶面为(110)的一片作为下层的基体材料;采用化学机械抛光(CMP)工艺对两个氧化层表面进行抛光;
第二步、将两片Si片氧化层相对置于超高真空环境中在350~480℃的温度下实现键合;将键合后的Si片温度升高100~200℃,使上层基体材料在注入的氢处断裂,对上层基体材料多余的部分进行剥离,保留100~200nm的Si材料,并在其断裂表面进行化学机械抛光(CMP),形成SOI衬底;
第三步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底表面生长Si外延层,厚度为2~3μm,N型掺杂,掺杂浓度为1×1016~1×1017cm-3,作为集电区;
第四步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻基区,利用干法刻蚀,刻蚀出深度为200nm的基区区域,在衬底表面生长三层材料:第一层是SiGe层,Ge组分为15~25%,厚度为20~60nm,P型掺杂,掺杂浓度为5×1018~5×1019cm-3,作为基区;第二层是未掺杂的本征Si层,厚度为10~20nm;第三层是未掺杂的本征Poly-Si层,厚度为200~300nm,作为基极和发射区;
第五步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻器件间深槽隔离区域,在深槽隔离区域干法刻蚀出深度为5μm的深槽,利用化学汽相淀积(CVD)方法,在600~800℃,在深槽内填充SiO2;
第六步、用湿法刻蚀掉表面的SiO2和SiN层,再利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻集电区浅槽隔离区域,在浅槽隔离区域干法刻蚀出深度为180~300nm的浅槽,利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2;
第七步、用湿法刻蚀掉表面的SiO2和SiN层,再利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻基区浅槽隔离区域,在浅槽隔离区域干法刻蚀出深度为215~325nm的浅槽,利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2;
第八步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为300~500nm的SiO2层;光刻基极区域,对该区域进行P型杂质注入,使基极接触区掺杂浓度为1×1019~1×1020cm-3,形成基极接触区域;
第九步、光刻发射区域,对该区域进行N型杂质注入,使掺杂浓度为1×1017~5×1017cm-3,形成发射区;
第十步、光刻集电极区域,并利用化学机械抛光(CMP)的方法,去除集电极区域的本征Si层和本征Poly-Si层,对该区域进行N型杂质注入,使集电极接触区掺杂浓度为1×1019~1×1020cm-3,形成集电极接触区域。并对衬底在950~1100℃温度下,退火15~120s,进行杂质激活,形成SiGe HBT器件;
第十一步、在衬底表面热氧化一层厚度为300~500nm的SiO2层,光刻隔离区域,利用干法刻蚀工艺,在深槽隔离区域刻蚀出深度为3~5μm的深槽;利用化学汽相淀积(CVD)的方法,在600~800℃,在深槽内填充SiO2,用化学机械抛光(CMP)方法,去除表面多余的氧化层,形成深槽隔离;
第十二步、光刻PMOS器件有源区,在PMOS器件有源区,利用干法刻蚀,刻蚀出深度为3.4~5.8μm的深槽,将中间的氧化层刻透;利用化学汽相淀积(CVD)方法,在600~750℃,在(110)晶面衬底的PMOS器件有源区上选择性外延生长七层材料:第一层是N型Si缓冲层,厚度为1.5~2.5μm,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.5~2μm的N型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1015cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5~10×1020cm-3,作为PMOS器件的漏区;第四层是厚度为3~5nm P型应变Si层,掺杂浓度为1~5×1018cm-3,作为第一P型轻掺杂源漏结构(P-LDD)层;第五层是厚度为22~45nm的N型应变Si作为沟道区,掺杂浓度为5×1016~5×1017cm-3;第六层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为第二P型轻掺杂源漏结构(P-LDD)层;第七层是Ge组分为15~25%,厚度为200~400nm的P型SiGe,掺杂浓度为5~10×1019cm-3,作为PMOS器件的源区;
第十三步、光刻NMOS器件有源区,在NMOS器件有源区,利用干法刻蚀,刻蚀出深度为1.9~2.8μm的深槽,利用化学汽相淀积(CVD)方法,在600~750℃,在(100)晶面衬底的NMOS器件有源区上选择性外延生长四层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.5~2μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1015cm-3,第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为1~5×1016cm-3;第四层是厚度为15~20nm的N型应变Si层,掺杂浓度为5×1016~5×1017cm-3作为NMOS器件的沟道;
第十四步、在衬底表面利用化学汽相淀积(CVD)方法,在600~800℃,淀积一层SiO2缓冲层和一层SiN,刻蚀出漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.3~0.7μm漏沟槽;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2,形成PMOS器件漏沟槽侧壁隔离;利用干法刻蚀去除平面的SiO2层,只保留PMOS器件漏沟槽侧壁SiO2层;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积掺杂浓度为1~5×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-SiGe,形成漏连接区;
第十五步、利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.5~0.9μm栅沟槽;利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在衬底表面淀积厚度为6~10nm的高介电常数的HfO2层,作为PMOS器件栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积掺杂浓度为1~5×1020cm-3的P型Poly-SiGe,Ge组分为10~30%,将PMOS器件栅沟槽填满,再去除掉PMOS器件栅沟槽表面以外的Poly-SiGe和SiO2层作为栅区,形成PMOS器件;
第十六步、刻蚀出NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在衬底表面淀积厚度为6~10nm的高介电常数的HfO2层,作为NMOS器件栅介质层;再淀积一层本征Poly-SiGe,厚度为100~300nm,Ge组分为10~30%,刻蚀NMOS器件栅极;光刻NMOS器件有源区,对NMOS器件进行N型离子注入,形成掺杂浓度为1~5×1018cm-3的N型轻掺杂源漏结构(N-LDD);在整个衬底淀积一厚度为3~5nm的SiO2层,干法刻蚀掉这层SiO2,作为NMOS器件栅极侧墙,形成NMOS器件栅极;
第十七步、在NMOS器件有源区进行N型磷离子注入,自对准生成NMOS器件的源区和漏区,使源区和漏区掺杂浓度达到1~5×1020cm-3;
第十八步、光刻引线窗口,在整个衬底上溅射一层金属钛(Ti),合金,光刻引线,构成导电沟道为22~45nm的双多晶、双应变混合晶面Si基BiCMOS集成器件。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210244314.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:处理盒及图像形成装置
- 下一篇:一种液晶屏点灯缺陷检测系统
- 同类专利
- 专利分类
H01L 半导体器件;其他类目中不包括的电固体器件
H01L27-00 由在一个共用衬底内或其上形成的多个半导体或其他固态组件组成的器件
H01L27-01 .只包括有在一公共绝缘衬底上形成的无源薄膜或厚膜元件的器件
H01L27-02 .包括有专门适用于整流、振荡、放大或切换的半导体组件并且至少有一个电位跃变势垒或者表面势垒的;包括至少有一个跃变势垒或者表面势垒的无源集成电路单元的
H01L27-14 . 包括有对红外辐射、光、较短波长的电磁辐射或者微粒子辐射并且专门适用于把这样的辐射能转换为电能的,或适用于通过这样的辐射控制电能的半导体组件的
H01L27-15 .包括专门适用于光发射并且包括至少有一个电位跃变势垒或者表面势垒的半导体组件
H01L27-16 .包括含有或不含有不同材料结点的热电元件的;包括有热磁组件的