[发明专利]一种基于云模型的人脸表情识别方法有效

专利信息
申请号: 201210293381.8 申请日: 2012-08-16
公开(公告)号: CN102880855A 公开(公告)日: 2013-01-16
发明(设计)人: 王树良;池荷花;池莲花 申请(专利权)人: 武汉大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 代理人: 张火春
地址: 430072 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 模型 表情 识别 方法
【说明书】:

技术领域

发明涉及人脸表情识别技术领域,尤其涉及一种基于云模型的人脸表情识别方法。 

背景技术

云模型具有宏观精确、微观模糊、宏观可控、微观不可控的特点,其本质单位是云滴组成的概念云,思想是兼顾了随机性和模糊性。它把自然语言中的随机性和模糊性有机地综合在一起,构成定性和定量相互间的映射,不但突破了概率统计中“硬计算”的局限性,而且解决了作为模糊集理论基石的隶属函数的固有缺陷,破除了粗集边界集的局限性,提供了一套解决数据挖掘中不确定性问题的新方法和新技术。云模型作为一种一般性的数学理论,巧妙地实现了定性定量之间的自由数学转换,其方法和技术发展至今,已经被广泛成功地应用于知识发现、空间数据挖掘、智能控制和大系统效能评估中,解决或解释自然、社会的问题或现象,并取得了显著的成效。 

云发生器(Cloud Generator,简称CG)指云模型的生成算法。云发生器建立起定性和定量之间相互联系、相互依存、性中有量、量中有性的映射关系,主要包括正向云发生器、逆向云发生器、X条件云发生器和Y条件云发生器。 

逆向云发生器(Backward Cloud Generator)是实现数值和其语言值之间的不确定性转换模型,是从定量到定性的映射。它将一定数量的精确数据有效转换为以恰当的定性语言值{Ex,En,He}表示的概念,并据此代表这些精确数据所反映的云滴整体。云滴对应精确数据的数量越多,反映的概念越确切。逆向云发生器是一个逆向的、间接的云生成过程,它把给定的符合某一分布规律的一组云滴Drop(xi,CT(xi))作为样本,Drop(xi,CT(xi))表示第i个云滴xi在数域空间的定量位置及第i个云滴xi代表该概念的确定度CT(xi),并产生描述云模型所对应的定性概念的三个数字特征(Ex,En,He),如图1所示。通过正向云发生器和逆向云发生器,云模型就建立起了定性和定量之间相互联系、相互依存、性中有量、量中有性的映射关系。 

逆向云发生器的输入为Drop(x1,CT(x1))、Drop(x2,CT(x2))、……Drop(xN,CT(xN)),输出为(Ex,En,He,N),下面是基于拟合的逆向云发生器的具体算法: 

(1)输入Drop(x1,CT(x1))、Drop(x2,CT(x2))、……Drop(xN,CT(xN)); 

(2)将云期望方程 线性化,转化为以云滴为观测值、以期望和熵为未知参数的观测方程,形成数据平差的误差方程组,然后采用间接平差法进行求解,得到期望值的最小二乘拟合值 

(3)根据步骤(2)所得期望值的最小二乘拟合值 并根据公式 计算熵的样本; 

(4)根据公式 计算熵值 

(5)根据公式H^e=1n-1Σi=1n(Eni-E^n)2]]>计算超熵 

(6)根据步骤(2)、(4)、(5)的结果输出 

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210293381.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top