[发明专利]基于快速全局K均值的自适应图像分割方法有效

专利信息
申请号: 201210415237.7 申请日: 2012-10-25
公开(公告)号: CN102903118A 公开(公告)日: 2013-01-30
发明(设计)人: 王爽;侯小瑾;赵丽;刘亚超;刘坤;马文萍;马晶晶;张涛 申请(专利权)人: 西安电子科技大学
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 快速 全局 均值 自适应 图像 分割 方法
【说明书】:

技术领域

发明属于图像处理技术领域,尤其涉及图像分割方法,可用于对图像进行分割和聚类。

背景技术

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程,它是由图像处理到图像分析的关键步骤,是一种基本的计算机视觉技术。

图像分割问题也可看成是对象的分类问题,所以可以使用模式识别中的模式分类技术。用特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。其中K均值、模糊均值聚类算法是最常用的聚类算法。K-均值聚类算法由于其算法思想简单,又容易实现对大规模数据集的聚类,因此该算法已成为一种最常用的聚类算法之一。

然而K-均值聚类算法中有两个值得共同关注的问题,即过分依赖于初始中心点的选取和聚类数的自适应确定。针对选取初始中心点的问题,出现了各种基于全局最优化思想的K-均值聚类算法,比如模拟退火算法、遗传算法等。然而这些技术并没有得到广泛认可。2003年Likas等人提出了全局K-均值聚类算法,但是该算法计算量大,时间性能较差,为此在他的文章中又给出了快速全局K-均值聚类算法,但是该算法仍然存在空间复杂度高和时间复杂度高的问题,并不适用于数据量大的数据集。

聚类数的自适应确定一直是聚类有效性研究的重要课题。通常,确定最佳聚类数的核心环节是聚类有效性指标的选择。聚类有效性指标用来评价聚类结果,确定最佳聚类数。多年来,很多学者提出了评估最佳聚类数的有效性指标。如:基于全部样本的类内离差矩阵和类间离差矩阵测度的Calinski-Harabasz指标,基于样本的类内散度与各聚类中心间距离测度的Davies-Bouldin指标,基于数据集本身的结构和模糊隶属度的性质的Xie-Beni指标等等。这些指标计算简单并且易于使用,在许多领域获得了成功应用。但是,它们对一些复杂聚类结构的评价效果并不理想,因而很难得到正确的最佳聚类数。

发明内容

本发明的目的在于针对现有技术的不足,提出一种基于快速全局K均值的自适应图像分割方法,以降低空间复杂度高和时间复杂度高,获得最佳聚类数,提高分割效果。

为实现上述目的,本发明包括如下步骤:

(1)输入一幅大小为R×Q的待分割的图像,总像素点个数为n,n=R×Q,设置该待分割的图像聚类数c的搜索范围[cmin,cmax],并令c=cmin

(2)对待分割图像的每一个像素点,用M×M的窗口进行3层小波变换,提取纹理特征xj,j=1,...,n;

(3)用改进后的快速全局K均值算法将提取的纹理特征xj,j=1,...,n聚成c类,得到聚类中心V={v1,v2,..,vc},vi是每一类的聚类中心,i=1,...,c;

(4)根据下式求出每一个像素点的纹理特征xj属于第i类的隶属度uij

uij=((Σf=1cdi,jdf,j)2m-1)-1,]]>

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210415237.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top