[发明专利]一种基于指数时变二阶滑模的再入飞行姿态控制方法有效

专利信息
申请号: 201210457819.1 申请日: 2012-11-14
公开(公告)号: CN102929151A 公开(公告)日: 2013-02-13
发明(设计)人: 盛永智;耿洁;刘向东;陈振 申请(专利权)人: 北京理工大学
主分类号: G05B13/04 分类号: G05B13/04;G05D1/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 100081 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 指数 时变二阶滑模 再入 飞行 姿态 控制 方法
【说明书】:

技术领域

发明涉及一种基于指数时变二阶滑模的飞行器再入段姿态控制方法,属于飞行器控制技术领域。

背景技术

飞行器无动力高速再入飞行过程中,马赫数、高度变化剧烈,飞行环境复杂多变,高低空气动力特性的巨大差异,通道间的耦合作用非常严重,表现出强烈的多变量耦合和非线性,而且飞行过程中往往又会受到各种事先无法完全预知的扰动和不确定。因此,通道非线性解耦方法和非线性鲁棒控制方法是再入飞行器姿态控制系统设计的关键。

滑模控制是实现系统鲁棒控制的一种有效方法,对参数不确定性和外部扰动具有良好的鲁棒性,且具有快速的动态响应能力,然而,滑模控制的鲁棒性能是当系统状态到达滑模面(滑动段)之后才能保证的,在系统状态的趋近运动阶段(到达段),控制律不具有鲁棒性,系统状态对外部扰动及参数不确定性较敏感。Bartoszewicz提出了一种时变滑模控制律,通过引入时变的滑模面,使系统状态从一开始就在滑模面上,避免了常规滑模控制的趋近运动,保证了系统的全局鲁棒特性。

抖振现象是滑模控制滑动段存在的固有缺陷,时变滑模面虽然取消了到达段,但是抖振现象依然存在,并且由于不存在到达段,引入了全局抖振问题。抖振现象可能造成系统硬件部分的损坏或导致系统的不稳定,严重限制了它在实际中的发展与应用,针对滑模控制的抖振问题,目前比较典型的是边界层法,即采用连续的函数(饱和函数或sigmoid函数等)来替代产生切换控制动作的符号函数或者不连续的控制量,但边界层的引入使得滑模面无法收敛至0,而是被保持在一个较小的范围内,降低了控制精度。降低抖振的另一种方法是使用扰动观测器,通过在控制量中引入对扰动的准确估计,降低切换增益的值,进而减小抖振。然而,由于需要额外设计观测器,这种方法实施较为繁琐。高阶滑模能够有效地降低抖振现象,且能够保证更高的控制精度和良好的鲁棒性,二阶滑模方法设计控制器保证滑模面及其导数收敛,它不仅能保证系统的鲁棒性,而且使得控制量在滑模面趋近于零时收敛于一个连续的信号,能够有效减弱抖振。且这种方法无需额外的观测器,实现简单。然而,与普通滑模类似的,现有的二阶滑模方法也无法保证在滑模到达段系统的鲁棒性。

发明内容

本发明的目的是为解决存在参数不确定性和外部干扰的再入飞行器抖振问题,提出一种基于指数时变二阶滑模的再入飞行器姿态控制方法。

本发明以面对称无动力飞行器模型为对象,研究其再入大气层时的姿态控制问题。该飞行器仅靠气动舵面来提供操纵力和操纵力矩,姿态控制系统的设计目标是:通过设计舵面偏转角[δeδaδr]T,实现对制导环给出的姿态指令Ωc=[αcβcμc]T的有效跟踪,并且对于再入过程中的环境剧烈变化、气动参数不确定以及外部扰动等具有强鲁棒性。

本发明方法具体包括以下步骤:

步骤1:建立再入飞行器的仿射非线性模型。

由于飞行器的旋转运动比位移运动快得多,忽略飞行器的位移运动在旋转运动方程中的作用;忽略地球自转角速度;再入过程采用BTT控制,侧滑角维持在零值附近,则sinβ≈0,tanβ≈0,cosβ≈1。

再入飞行器姿态运动方程描述为:

α·=ωz]]>

β·=ωxsinα+ωycosα]]>

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210457819.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top