[发明专利]一种基于加权金字塔结构的图像特征提取方法在审

专利信息
申请号: 201210475799.0 申请日: 2012-11-21
公开(公告)号: CN103839063A 公开(公告)日: 2014-06-04
发明(设计)人: 李圣;田宏;黄曙光 申请(专利权)人: 大连灵动科技发展有限公司
主分类号: G06K9/46 分类号: G06K9/46;G06T7/00
代理公司: 大连东方专利代理有限责任公司 21212 代理人: 曲永祚
地址: 116023 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 加权 金字塔结构 图像 特征 提取 方法
【说明书】:

技术领域

发明涉及图像特征方法,特别是一种基于加权金字塔结构的方法。

背景技术

无论是孩童学看画,还是成人对图像的理解首先是对图像中感兴趣的、典型的、有意义图像块的认识,然后再通过对整幅图像中这些图像块之间的空间结构关系、布局以及更高层的语义理解,最后综合成对整幅图像的理解。把那些具有典型意义的图像块称为图元,具有典型意义图元的提取和语义分析是整幅图像语义分析的基础。图像典型意义图元提取的问题本质上是图像分割问题。图像分割是图像分析和理解中的一项基本内容,成为图像内容检索系统中一个基础而又非常关键的部分。现有的很多系统仅仅根据整幅图像的低层特征进行检索,图像中可能包含了大量不相关的信息。这些不相关的信息在提取出的特征中占了很大的比例的话,提出的特征就不能够准确地反映检索的要求,检索的结果中就可能出现大量不相关的结果,即使采用相关反馈等技术手段也难以取得比较令人满意的检索结果。事实上,人们判断图像的相似性并非仅仅建立在整幅图像底层特征的相似性上,基于内容检索的初衷是想根据人对图像的理解和认识来衡量图像间的相似性进行检索的,这种人对图像的理解可表示成图像的高层语义。

为了实现更为贴近用户的自然而简洁的查询方式,并提高图像检索的精度,必须实现由图像底层次特征推知高层次语义,从而使用高层语义进行图像检索。为此需要解决两方面的基本问题:一是提供高层语义的描述方式;二是应有将低层图像视觉特征映射到高层语义的方法。从目前现状来看,并没有从本质上解决视觉特征和语义之间的关联问题,“语义鸿沟”依然存在,如何提取图像语义成为基于内容的图像检索领域最具挑战性的难题。

发明内容

基于加权金字塔结构的图像特征提取方法是借鉴人类基于图元的图像内容理解思想、从人类对图像整体和局部的认知顺序和认知程度出发的一种简化的多层次图像特征提取手段。

为了实现上述目的,本发明的技术方案如下:一种基于加权金字塔结构的图像特征提取方法,包括以下步骤:

A、图像分层

将图像按照金字塔结构分为三层。金字塔中的每一层来都代表着整幅图像,在图像理解过程中都发挥着相同的作用。

A1、第一层

每一幅图像都会表达一个完整的高层语义,即一幅图像是一个整体,它蕴涵着图像中各个图元之间的空间、时间和语义关系,而且它在人类对图像的理解过程中起着至关重要的作用,因此,把整个图像当成金字塔第一层;

A2、第二层

兼顾到人类摄影的习惯及尽量保持图像中每个图元的完整性,提高图像中主要图元在整幅图像理解过程中的作用,我们采用如图1所示的方式对图像进行切分,作为金字塔结构的第二层;

A3、第三层

作为对第一层和第二层切分方式的补充和完善,将图像切割成4*4个小块,作为金字塔结构的第三层。

B、分层加权

上述的多层次的图像分割手段,可以将图像分成22个子图像块,但每个子图像存在尺寸大小上的差异,在图像内容理解过程中所起的作用也不一样。因此,为了衡量各个子图像块在理解过程中所发挥的作用,需要对每个图像块进行加权处理。对于金字塔中的每一层来说,其都代表着一幅整体的图像,因此我们设每层结构的整体权重,显然Wg=1:

Σi=13Wg=3(i=1,2,3)]]>

同时,对于每层中的子图像块,设其权重为:

Wi=1Ni(i=1,2,3)]]>

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连灵动科技发展有限公司,未经大连灵动科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210475799.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top