[发明专利]基于自动差分聚类算法的遥感图像分割方法有效
申请号: | 201210493436.X | 申请日: | 2012-11-27 |
公开(公告)号: | CN102945553A | 公开(公告)日: | 2013-02-27 |
发明(设计)人: | 李阳阳;焦李成;王爽;武小龙;马文萍;马晶晶;李玲玲 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 自动 差分聚类 算法 遥感 图像 分割 方法 | ||
技术领域
本发明属于图像处理技术领域,更进一步涉及遥感图像分割方法,可用于目标识别。
背景技术
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。目前,人们更多采用基于聚类分析的方法来进行图像分割。用基于聚类分析的方法分割图像是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,从而达到图像分割的目的。
为了更加准确、全面的获取图像分割信息,近几年出现了一些应用自动聚类方法实现图像分割的技术,可以在图像分割类别数未知的情况下对图像进行分割,而且可以达到更好的分割结果和分割精度。
U.Maulik在学术期刊“Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification”(IEEE Trans.Geosci.Remote Sens.VOL.48,NO.9,Sep.2010)中公开了一种基于改进差分进化的自动模糊聚类的图像分割方法。该方法首先对传统的差分进化方法进行了改进,提出了一种加入模糊策略的自动聚类方法,然后将其用于图像分割,最后通过XB指标获得最终的图像分割结果。虽然该方法在区域一致性和边缘保持方面有一定的改善效果,但是该方法仍然存在的不足是,由于采用了过多的进化技术,增加了整个分割过程的计算复杂度,使得分割速度较慢,同时,该方法选取的聚类指标不恰当,图像分割结果较差。
发明内容
本发明针对上述现有技术存在的不足,提出了一种新的基于自动差分聚类算法的遥感图像分割方法。以解决现有图像分割技术中收敛速度慢、稳定性较差,计算复杂度高、细节保持性能不好的缺点,提高图像分割的精度。
本发明实现上述目的的思路是:在对输入的图像进行特征提取和分水岭分割获得聚类数据后,先随机抽取聚类数据初始化种群,再使用PBM指标评价聚类性能,然后用改进的差分进化方法进化种群,最后对种群进行类别数振荡操作并用FCM方法更新质心,通过不断的迭代更新获得最优个体,最优个体所对应的类别标号作为像素的灰度值,得到图像分割结果。其实现步骤包括如下:
(1)输入待分割图像I,分别提取待分割图像I的小波特征向量和纹理特征向量,并用小波特征向量和纹理特征向量表示待分割图像I的每一个像素点v;
(2)产生聚类数据:
用待分割图像I的膨胀变换减去其腐蚀变换,得到形态梯度图像I1,计算形态梯度图像I1的灰度值矩阵的平方积,得到反映图像边缘的浮点活动图像I2,用分水岭方法初分割浮点活动图像I2,得到不同的图像块,对每一个图像块的所有像素点的特征取平均值,获得代表初始聚类数据的每一块的特征值;
(3)随机抽取聚类数据初始化种群:
种群中每个个体编码长度为L+L×d,每个个体分为两个部分,前L位为标签位,后L×d位为L个待激活的聚类中心,d为聚类数据的维数,随机初始化每个个体的标签位,并随机抽取L个聚类数据作为待激活的聚类中心,令当前迭代次数t=1;
(4)根据每个个体的标签位激活相应个体的聚类中心;
判断个体标签T每一位值的大小是否大于0.5,如果大于0.5,则激活相应的聚类数据点,否则不予激活;所有被激活的聚类数据点组合成为该个体的聚类中心;
(5)根据激活的聚类中心,采用PBM有效性指标公式计算每个个体适应度值;
(6)用改进的差分进化方法对种群进行变异和交叉,并利用个体适应度值进行种群更新;
(7)对更新后的种群进行类别数振荡操作:
7a)对种群中的每个个体依照振荡规则进行类别数振荡操作,每个个体获得新的类别数;
7b)计算每个个体中L个数据点的密度,并依照密度大小进行排序;
7c)将新的类别数与旧的类别数进行比较,如果小于,则依照密度排名从该个体中选择密度较大的聚类数据点加入聚类中心,否则,从已有聚类中心中淘汰密度排名较小的聚类数据点。
(8)利用FCM方法对振荡操作后的聚类中心进行更新;
(9)判断种群迭代的次数是否达到使用者设定的最大进化代数T=100,或者相邻两代最优个体的适应度差值是否小于规定数值E=10-4,如果是,则保存最优个体并执行步骤(10),否则,返回步骤(4);
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210493436.X/2.html,转载请声明来源钻瓜专利网。
- 上一篇:叶片干枯褶皱的模拟方法
- 下一篇:卷筒纸生产系统及方法