[发明专利]一种货车闸瓦故障的识别方法及装置有效

专利信息
申请号: 201210543988.7 申请日: 2012-12-14
公开(公告)号: CN103034861A 公开(公告)日: 2013-04-10
发明(设计)人: 魏振忠;李楠;曹志鹏;刘畅 申请(专利权)人: 北京航空航天大学
主分类号: G06K9/46 分类号: G06K9/46
代理公司: 北京派特恩知识产权代理事务所(普通合伙) 11270 代理人: 张颖玲;任媛
地址: 100083*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 货车 闸瓦 故障 识别 方法 装置
【权利要求书】:

1.一种货车闸瓦故障的识别方法,其特征在于,该方法包括:

从当前图像中提取三个角度的分割特征;

根据所述三个角度的分割特征确定当前图像的货车闸瓦特征区域;

从当前图像的货车闸瓦特征区域中提取货车闸瓦的特征;

使用支持向量机SVM算法对货车闸瓦的特征计算得出当前图像的特征值,根据所述特征值以及预置的故障识别值判定货车闸瓦是否存在故障。

2.根据权利要求1所述的方法,其特征在于,所述从当前图像中提取三个角度的分割特征,包括:从故障图像动态检测系统TDFS中周期性提取当前图像,对当前图像进行三个角度的灰度投影得到三条投影曲线;对所有投影曲线进行滤波,将滤波后的各个投影曲线中的最大值均作为当前图像三个角度的分割特征。

3.根据权利要求1所述的方法,其特征在于,所述根据三个角度的分割特征确定当前图像的货车闸瓦特征区域,包括:使用Canny算子提取当前图像的边缘信息,根据角度为零度的分割特征,确定货车闸瓦特征区域的左边界和右边界的坐标值;根据角度为-25°和25°的分割特征,确定货车闸瓦特征区域的上边界和下边界的坐标值。

4.根据权利要求1所述的方法,其特征在于,所述从当前图像的货车闸瓦特征区域中提取货车闸瓦的特征,包括:使用基于背景面积预估的方法,将当前图像的货车闸瓦特征区域中的图像分割得到货车闸瓦区域二进制图像;使用像素标记法,从所述货车闸瓦区域二进制图像中提取最大连通区域;使用Canny算子,从最大连通区域中的二进制图像中提取货车闸瓦边缘轮廓;根据所述货车闸瓦边缘轮廓提取货车闸瓦的特征。

5.根据权利要求4所述的方法,其特征在于,所述货车闸瓦的特征包括:货车闸瓦边缘轮廓的平滑特征值、货车闸瓦边缘轮廓的凹凸特征值、货车闸瓦边缘轮廓的锯齿度、货车闸瓦边缘轮廓的固靠值、货车闸瓦边缘轮廓的致密性、货车闸瓦边缘轮廓的圆形性、货车闸瓦边缘轮廓的长宽比、货车闸瓦边缘轮廓的面积和货车闸瓦边缘轮廓的周长。

6.根据权利要求1所述的方法,其特征在于,所述从当前图像中提取三个角度的分割特征之前,该方法还包括:使用不存在故障的货车闸瓦图像和存在故障的货车闸瓦图像分别建立正、负样本训练集;分别提取正、负样本训练集中的所有图像的特征,组成正、负样本训练集对应的九维特征向量,使用SVM算法计算得出的正、负样本对应的值,将负样本训练集对应的值作为故障识别值。

7.一种货车闸瓦故障的识别装置,其特征在于,该装置包括:特征提取模块和识别模块;其中,

特征提取模块,用于从当前图像中提取三个角度的分割特征,根据所述三个角度的分割特征确定当前图像的货车闸瓦特征区域,从当前图像的货车闸瓦特征区域中提取货车闸瓦的特征,将所述货车闸瓦的特征发送给识别模块;

识别模块,用于使用SVM算法对特征提取模块发来的所述货车闸瓦的特征计算得出当前图像的特征值,根据所述特征值以及预置的故障识别值判定货车闸瓦是否存在故障。

8.根据权利要求7所述的装置,其特征在于,所述特征提取模块,具体用于从所在的TDFS中周期性提取当前图像,对当前图像进行三个角度的灰度投影得到三条投影曲线;对所有投影曲线进行滤波,将滤波后的各个投影曲线中的最大值均作为当前图像三个角度的分割特征。

9.根据权利要求7所述的装置,其特征在于,所述特征提取模块,具体用于使用Canny算子提取当前图像的边缘信息,根据角度为零度的分割特征,确定货车闸瓦特征区域的左边界和右边界的坐标值;根据角度为-25°和25°的分割特征,确定货车闸瓦特征区域的上边界和下边界的坐标值。

10.根据权利要求7所述的装置,其特征在于,所述特征提取模块,具体用于使用基于背景面积预估的方法,将当前图像的货车闸瓦特征区域中的图像分割得到货车闸瓦区域二进制图像;使用像素标记法,从所述货车闸瓦区域二进制图像中提取最大连通区域;使用Canny算子,从最大连通区域中的二进制图像中提取货车闸瓦边缘轮廓;根据所述货车闸瓦边缘轮廓提取货车闸瓦的特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210543988.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top