[发明专利]基于一阶矩的卷积器有效
申请号: | 201210553580.8 | 申请日: | 2012-12-19 |
公开(公告)号: | CN103049716A | 公开(公告)日: | 2013-04-17 |
发明(设计)人: | 刘建国;曹丽;潘超;熊骏 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06G7/14 | 分类号: | G06G7/14 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 一阶 卷积 | ||
技术领域
本发明涉及数字信号处理的卷积和相关计算领域,尤其针对有限长度的循环卷积和相关的无乘法计算领域及其VLSI(超大规模集成电路)设计。
背景技术
卷积运算和相关函数运算均是数字信号处理中最基本、常用的计算,由于它们的计算复杂度高,一定程度上影响了信号实时处理的性能。因此,如何在保持低功耗的同时提高其运算速度、减少硬件资源需求,在数字信号处理中具有十分重要的理论和实用价值。现有的高效算法和硬件结构大致可分为以下四类:
(1)基于快速傅里叶变换的计算方法
由于傅里叶变换存在各种快速计算方法,而时域的卷积运算与其对应的频域乘积运算等价,因此可将待卷积的数据先进行快速傅里叶变换,再将变换后的两组数据对应相乘,最后进行反傅里叶变换,得到卷积结果。该方法借助于快速傅里叶变换(FFT)的计算优势,与直接进行卷积计算相比,大大提高了计算速度。
缺点:增加傅里叶变换环节后引入了三角函数和复数的计算,且经过正反两次傅里叶变换对数据产生的截断误差降低了最终结果的精确性;计算过程中仍存在大量乘法,复杂度较高;各种快速傅里叶变换算法对卷积长度有相应要求,缺乏通用性。
(2)基于数论变换、多项式分解和矩阵分解的计算方法
应用数论变换和多项式中国剩余定理,如短循环卷积算法,Agarwal-Cooley嵌套卷积算法和分裂嵌套循环卷积算法等,将两个长数列的卷积转化成若干较短数列的卷积,或将大的卷积矩阵分块并行计算,避免了三角函数和复数的引入,能较快地完成卷积计算。
缺点:这些计算过程中仍存在大量乘法操作;计算结构复杂;大部分结构只能针对数据长度能分解成特定值乘积的情况,缺乏通用性。
(3)基于脉动阵列结构的计算方法
为更快实现卷积和相关计算,适用于VLSI实现且专门针对卷积和相关计算的脉动阵列算法结构被提出。结合该技术,对原有卷积和相关快速算法进行改进后得到的新方法大大提高了卷积和相关的计算速度。
缺点:用该结构直接计算卷积,计算量大;结合快速卷积算法后同样存在结构复杂、对卷积和相关计算有长度限制,缺乏通用性,且硬件资源消耗较大。
由于以上方法中都包含有乘法操作,而在相同的硬件技术发展背景下乘法实现占用的资源大且速度较加法操作慢,因而如何避免乘法器的使用,设计出计算速度更快、资源消耗更低的卷积和相关器是提高计算性能的关键。
(4)结合分布式算法和脉动阵列结构的无乘法计算方法
现有的无乘法卷积和相关的方法都采用事先对卷积核序列或相关核序列进行预处理并存储于大容量存储器中,将输入序列组合作为该存储器的地址值,取出相应值进行移位和累加,完成计算。主要有传统分布式算法(即DA算法)、改进型存储高效的分布式算法和基于分布式算法的硬件高效的脉动式阵列结构。
传统的分布式算法是早期计算循环卷积和相关的经典无乘法算法。主要是根据算法原理将卷积核序列或相关核序列预先计算并存储,在计算时将输入数据序列的相同比特位从高到低且按每个数据的先后顺序组合作为地址值,取出预先处理并存储于存储器中的卷积核序列值,最后移位累加完成计算。在整个计算中,该算法只使用加法和移位操作,对任意长度的卷积都能在较少周期内快速完成卷积和相关计算。
缺点:存储处理好的卷积核序列和相关核序列所需的存储器大小与计算点数成指数倍增长。此外,当卷积和相关的数据点数较大时,寻址范围大,硬件资源消耗高。
改进型存储高效的分布式算法针对传统DA算法的存储上有了很大改进,大大减少了存储资源的占用。通过增加一个地址解码器和桶形移位寄存器,完全消除了待存储的冗余数据。
缺点:当卷积长度很大时,所需的多对一地址解码器设计较复杂,存储资源需求仍然庞大。
基于分布式算法的硬件高效的脉动式阵列结构可将卷积长度分段,对每段数据都同时进行分布式卷积计算,进一步降低了对存储容量的需求,在延时-面积积这一性能指标的衡量下,比以往的无乘法计算方法更优。
缺点:该算法只能适用于卷积长度为非质数的情况,并且当卷积长度为大质数之积时,存储资源需求较大。
发明内容
本发明公开了一种卷积器,其所要解决的技术问题是在卷积计算中避免三角函数和复数计算的引入,提高计算精度;克服现有的快速卷积器对乘法器或大容量存储资源的需求;消除在计算卷积和相关时对长度的限制;在减少硬件资源占用和降低功耗的同时保持较高的计算速度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210553580.8/2.html,转载请声明来源钻瓜专利网。