[实用新型]一种基于线性规划的LDPC译码器有效

专利信息
申请号: 201220328332.9 申请日: 2012-07-06
公开(公告)号: CN203039671U 公开(公告)日: 2013-07-03
发明(设计)人: 姜小波;吴文涛;黎红源 申请(专利权)人: 华南理工大学
主分类号: H03M13/11 分类号: H03M13/11
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 蔡茂略
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 线性规划 ldpc 译码器
【说明书】:

技术领域

实用新型涉及电子通信技术领域,特别涉及一种基于线性规划的LDPC译码器。

背景技术

低密度奇偶校验码(LDPC,Low Density Parity Check Code)由于具有优越的性能和易于并行实现的优点,广泛应用于现代通信各个领域中,如高速光纤通信、下一代移动通信系统、高清数字电视广播,并被各种现代通信标准所采纳,例如10GBASE-T、DVB-S2、802.11n、802.16e、802.15.3c、CMMB、DTTB等。

LDPC码的线性规划译码是建立在线性规划松弛数学模型上的一种LDPC译码方法。由于该译码方法具有最大似然特性,即译码器一旦输出码字,那必定是最大似然码字,因此它在最大似然验证性以及性能分析方面比传统的置信传播译码要方便很多。而且,只要建立了译码模型,就可以方便地目前发展成熟的优化算法进行线性规划问题的求解。

传统的LDPC线性规划译码方法,需要在初始化时读入信道的噪声方差来构造线性规划的目标函数;并且在译码过程的添加约束不等式时,LDPC码的每个校验节点所对应的所有约束不等式都需要加入线性规划的模型中;因此LDPC译码的线性规划模型很大,运算复杂度也随之增大,译码效率不高。

实用新型内容

本实用新型为了克服现有技术存在的缺点与不足,提供一种基于线性规划的LDPC译码器。本实用新型以最大似然的方法从含有噪声和干扰的接收序列中还原发送端的数据,应用于通讯领域的接收机。

本实用新型的技术方案:

一种基于线性规划的LDPC的译码方法,包括如下步骤:

(1)预设校验矩阵M×N,i、j分别表示校验矩阵中变量节点和校验节点的集合,n(j)表示与任一校验节点j相连的变量节点的集合,m(i)表示与任一变量节点相连的校验节点的集合;

(2)获取N个经过信道后的信息比特yi,i=1,2,...,N;

(3)建立LDPC译码的线性规划模型,构造目标函数:

Σi=1Nyifi,]]>fi∈conv(C)

式中:fi表示校验矩阵中第i个变量节点的取值,所述conv(C)表示满足目标函数的约束的变量集合;

(4)对步骤(3)中建立线性规划模型进行线性规划求解,得到目标函数最小值时的取值,所述i=1,2,...,N,k为正整数;

(5)找出n(j)包含的且i∈n(j),将所包含的进行降序排列得到i→i'的映射,并对降序排列后的进行四舍五入,得到的取值为0或1;

(6)对于校验节点j,j=1,2,...,M,按照下述校验约束方程,进行模二相加为零的校验判断,并找出不符合校验约束方程的个数为wk个等式,所述校验约束方程为:

其中,i'即为步骤(5)中所得的降序排列后每个所对应的新序号,A表示数集{1~rj}中的奇数集,即{1,3,…,〈rj〉},B表示数集{1~rj}中的偶数集,即{2,4,…,〈rj〉};r表示行重,rj表示第j行的行重;

(7)根据步骤(6)所得的不符合校验约束方程的wk个等式,判断等式是否满足终止策略,如果满足终止策略,则停止求解过程,得到译码结果;否则,继续下一步;

所述终止策略为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201220328332.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top