[发明专利]一种可发电风资源的预测方法有效
申请号: | 201310278836.3 | 申请日: | 2013-07-04 |
公开(公告)号: | CN103489037A | 公开(公告)日: | 2014-01-01 |
发明(设计)人: | 乔颖;鲁宗相;汪宁渤;李剑楠;徐飞;马彦宏;赵龙;王定美;路亮 | 申请(专利权)人: | 清华大学;国家电网公司;甘肃省电力公司;甘肃省电力公司风电技术中心 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06 |
代理公司: | 深圳市鼎言知识产权代理有限公司 44311 | 代理人: | 哈达 |
地址: | 100084 北京*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 发电 资源 预测 方法 | ||
技术领域
本发明属于电力系统预测与控制技术领域。尤其涉及一种基于多数据源降维的可发电风资源的预测方法。
背景技术
近年来,能源枯竭和环境污染情况日益严重,可再生能源逐渐受到了全世界的关注。风能是取之不尽的清洁能源,风力发电技术已经作为新能源发电中最成熟的技术开始了大规模的应用。
准确预测可发电风资源是对大规模风电优化调度的基础。可发电风资源预测的目标是利用多种数据源隐含信息来还原、预估目标区域在未来一段时间内自然状态下的风资源状况,可为风电实时调度、风电场发电能力评估以及弃风电量估计等研究提供关键信息。然而,由于风场实际发电功率易受到限电等人为干扰而失去参考意义,且量测布点无法做到全覆盖,工程上很难通过对风力发电实时监测数据的外推来直接获得这一信息。可发电风资源的预测与超短期风电功率预测既有联系又有区别。从建模方法来看,大量用于风电功率预测中的模型均可以作为参考,如神经网络模型等。但与一般的风电功率预测不同,由于实测功率序列受到人为干扰,所以基于实测功率序列的预测模型(如时间序列模型、持续法)在此并不适用,而需要利用其他未受人为干扰的量测量如测风序列进行建模。
然而,测风序列并不是一个“友好”的建模输入量。测风塔通常位置分散,离风机群有一定距离,测风数据与风机轮毂高度处的可利用风速存在一定差异。多测风数据源的引入是提高预估精度的重要手段,但这同时也带来数据质量参差不齐、信息冗余等问题。虽然可通过引入更多如温度、风向等信息以提高模型精度,但利用的信息越多,模型越复杂,工程实用性越差。而直接输入包含大量杂散信息的测风序列,模型的收敛和精度反而下降。
发明内容
综上所述,确有必要提供一种能够避免受到大量人为干扰,又能克服多数据源引入后在有用信息筛选和提取方面所带来的各种问题的可发电风资源的预测方法。
一种可发电风资源的预测方法,包括以下步骤:以复相关系数为筛选依据,通过遍历所有可用测风序列的各种组合,以计算可用测风序列与平均风速序列的复相关系数,按照最大复相关系数选择模型输入,实现对可用测风序列的初步筛选,得到多维的有效测风序列;以典型相关分析方法为理论基础,对多维的有效测风序列进一步提取,将多维的测风序列降至一维;以及以降维后的测风序列作为模型输入,以风场平均风速作为模型输出,采用基于遗传算法的BP神经网络模型训练得到映射模型,最终将该映射模型应用于实时输入测风序列,实现可发电风资源的预测。
相对于现有技术,本发明以典型相关系数分析方法为理论依据,实现多维测风序列的降维处理而达到提取有用信息的目的,最终构建的可发风资源预估方法弥补了多维测风序列引入后给数据筛选和信息提取带来的困难,亦进一步提高预估精度。
附图说明
图1为本发明提供的基于多数据源降维的可发风资源预估方法流程图。
图2为本发明中涉及的BP神经网络模型结构示意图。
图3为本发明实施例提供的中多数据源的地理分布示意图。
图4为本发明提供的降维方法带来估计误差变化的概率分布图像。
具体实施方式
下面根据说明书附图并结合具体实施例对本发明的技术方案进一步详细表述。
请参阅图1,图1为本发明提供的风光储联合发电系统风险评估方法的流程图,包括以下步骤:
步骤S10,以复相关系数为筛选依据,通过遍历所有可用测风序列的各种组合,以计算可用测风序列与平均风速序列的复相关系数,按照最大复相关系数选择模型输入,实现对可用测风序列的初步筛选,得到多维的有效测风序列;
步骤S20,以典型相关分析方法为理论基础,通过构建多元线性回归模型实现对多维的有效测风序列进一步提取,将多维的测风序列降至一维;以及
步骤S30,以降维后的测风序列作为模型输入,以风场平均风速作为模型输出,采用基于遗传算法的BP神经网络模型训练得到映射模型,最终将该模型应用于实时输入测风序列以实现可发电风资源的预测。
在步骤S10中,所述复相关系数是用于衡量单变量与多个变量相关关系的指标,用单要素对多要素作线性回归,得到的多要素的线性组合与单要素之间的相关系数即为复相关系数。
作为具体的实施例,为了计算单一变量 与其他多变量、…之间的复相关系数,具体计算过程如下:
步骤S11,对、…作关于的线性回归,得到:
,
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;国家电网公司;甘肃省电力公司;甘肃省电力公司风电技术中心,未经清华大学;国家电网公司;甘肃省电力公司;甘肃省电力公司风电技术中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310278836.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:用于网络变压器引脚的切割机
- 下一篇:烟雾检测方法及相应的设备和系统
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理