[发明专利]基于多参数磁共振影像的前列腺癌计算机辅助识别系统在审
申请号: | 201310370531.5 | 申请日: | 2013-08-23 |
公开(公告)号: | CN104424386A | 公开(公告)日: | 2015-03-18 |
发明(设计)人: | 王成彦;王鹤;胡娟;陈双娟;张珏;王霄英;方竞 | 申请(专利权)人: | 北京大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00;A61B5/055 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100871*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 参数 磁共振 影像 前列腺癌 计算机辅助 识别 系统 | ||
技术领域
本发明属于医学图像的计算机辅助分析技术领域,具体是一种基于磁共振图像(MRI)中感兴趣区域(ROI)的特征参数来辅助识别前列腺癌病灶的软件系统。
背景技术
前列腺癌是男性中常见的一种恶性肿瘤,是男性癌症患者中第二多发的疾病,在整个人群中发病率排在第五位。近些年来,前列腺癌受到了潜在患者和泌尿科医师越来越多的关注,临床病例数也在快速积累。磁共振技术应用于前列腺疾病有十多年时间,目前已成为前列腺癌识别、诊断、指导治疗、随访最常用的影像学方法。近几年,由于磁共振技术的进步和诊断经验的积累,同时包含解剖信息和功能信息的多参数磁共振成像大大提高了磁共振在前列腺癌各方面的应用价值。
目前的前列腺磁共振检查主要包括常规检查,如T1加权成像(T1WI)和T2加权成像(T2WI),以及能够提供功能信息的多种磁共振功能成像,如扩散加权成像(DWI)、动态增强图像(DCE)、磁共振波谱成像(MRS)等。各个序列图像之间的信息能够相互补充,但同时临床医生需要综合利用所有的影像结果,对病人的情况做出判断,而判断正确与否依赖于临床医生的个人经验。计算机辅助识别系统可有效避免医生基于单一指标判断,或过度依赖于个人经验的主观判断,这种计算机辅助技术可以综合多个参数并提供多变量分析,不仅使医生的诊断过程更加客观,而且提高了诊断效率。
人工神经网络(ANN)以其能够以计算方法为基础进行多因子分析的特性而被广泛应用于前列腺癌的识别。与传统的统计方法或是单一指标预测相比,ANN可含多个输入参数,所有指标可以同时作为ANN的输入,它可以有效地利用这些具有非线性关系的变量,进行训练和预测,从而实现辅助诊断,大大提高了诊断效率与诊断准确率,在不同程度上减少了不必要的穿刺。
由于技术的复杂性,多参数磁共振影像的信息不能很好地传递给临床医生,不易被临床医生所解读和利用。本计算机辅助识别系统正可作为一项辅助技术,解决临床医师难以有效利用多参数磁共振成像信息的难题。将多种磁共振序列所得影像的解剖及功能信息用于前列腺癌病灶的识别,可辅助医师更敏感地检出前列腺癌。这样的计算机辅助识别系统将使得多参数磁共振信息得到充分利用,在计算机辅助识别系统的帮助下临床医生的诊断过程更加客观准确,操作起来也非常方便,使前列腺癌的各项检查更有效率。
发明内容
本发明提出了一种通过计算机辅助的方法来识别前列腺癌的系统。通过提取多参数磁共振图像中的定量信息,选取合适的特征参数,应用人工神经网络的方法,对前列腺癌病灶进行了识别。
本发明能够通过计算机的定量分析,完成以下任务:
1.从磁共振图像中挖掘有用信息,识别前列腺癌病灶,给出患癌概率,具有较高的准确率、敏感性、特异性、阳性预测率和阴性预测率;
2.对前列腺区分外周带和中央腺体分别进行分析,比较了二者在磁共振影像上特征的差异;
3.通过特征筛选,选取对识别前列腺癌有重要意义的特征参数,为临床诊断提供依据;
4.对比不同磁共振序列的组合效果,找出最佳的组合形式,尝试为临床扫描提供更合理的方案和参考。
为实现上述目的,本发明采取以下技术方案:基于多参数磁共振影像的前列腺癌计算机辅助识别系统,包括以下三个步骤:
1.将多参数磁共振影像的数据导入该计算机辅助识别系统,从图像中选取可疑区域;
2.提取所选图像区域中的特征参数,选取对辅助识别前列腺癌贡献较大的特征作为后续步骤的输入;
3.将步骤2中得到的特征参数作为人工神经网络的输入参数,通过调节神经网络的结构,使得输出的识别结果达到最佳。
本发明通过采取以上技术方案,很好地将常规磁共振扫描序列所得的图像信息整合起来,利用这些图像中的定量参数,客观地给出了前列腺癌的识别结果。通过比较发现,综合利用磁共振影像中三个常规序列的扫描结果能更准确地识别前列腺癌,并为临床决策提供更加丰富的信息。该技术方案操作简单,只需临床医生从扫描图像中选取可疑的前列腺癌区域,即可给出该区域的患癌概率,能给医生一个直观的参考,为后续制定诊断方案提供重要依据。
本发明已在71例病人的影像数据中做过测试,所有前列腺癌患者为穿刺验证,非前列腺癌患者同时得到穿刺排除和三年以上随访。病人在接受穿刺之前均接受过多参数磁共振扫描,包括T2WI,DWI和DCE,并经过常规临床检查。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310370531.5/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用