[发明专利]基于嵌入式的苹果采后田间分级检测方法及系统有效

专利信息
申请号: 201310419877.X 申请日: 2013-09-14
公开(公告)号: CN103646251B 公开(公告)日: 2017-05-17
发明(设计)人: 朱启兵;许立兵;黄敏;李静;徐志鹏 申请(专利权)人: 江南大学
主分类号: G06K9/62 分类号: G06K9/62;G01N21/89;G01B11/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 214122 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 嵌入式 苹果 田间 分级 检测 方法 系统
【说明书】:

技术领域

发明涉及农产品无损检测技术领域,特别涉及一种苹果表皮缺陷和大小的快速检测系统和方法。

背景技术

我国是世界果树大国,栽培历史悠久,资源丰富,位居世界前列,但由于采后处理不够,使得外销的品质难以保证,在国际市场上缺乏竞争力,其原因有很多,其中一个重要的原因是检测与分级的手段落后。

苹果的采后田间预分检是指果农在田间对采后苹果进行分级检测处理的一道工序。它一方面可以帮助果农实现苹果的分级销售,提高经济效益;另一方面,可以减少苹果在储藏、运输期间,病害苹果之间的交叉感染,减少产品损耗;同时可方便水果生产加工,同时企业根据苹果的田间分检结果,采用有针对性的储存、加工、分级等工艺,增加企业竞争力,提高经济效益。由于潜在的巨大经济效益,苹果的采后田间预分检被认为是未来10年内对苹果产业具有重大影响的技术之一。尽管目前国内外已有苹果分级检测系统应用到市场,上位机以PC机为主,体积大,不易携带,价格昂贵,少则上百万,多则上千万,普通果农无法承受,无法普及推广苹果的采后预分拣技术,每年造成了巨大的经济损失。

发明内容

本发明的目的是克服现有技术中存在的不足,提供了一种基于嵌入式的苹果采后田间分级检测方法及系统,其采用ARM(S3C6410)作为系统的核心处理器,运行内核可裁剪的Linux系统,采用基于Haar-like特性的改进的AdaBoost目标检测算法,引入了分类风险系数,修改了训练中的样本权值更新规则,同时结合改进的遗传算法对分类器的样本权值寻优,保证了遗传算法的收敛能力,有效地提高了算法的优化能力,避免了“早熟”现象的发生。生成分类精度高的强分类器,最后将强分类器级联生成级联分类器,调用OpenCv机器视觉库,检测图像中的缺陷和苹果大小,结合QT编写人机友好交互界面。能快速检测出采后苹果的缺陷和大小,具有实时性好,可靠性高,稳定性强的特点。

按照本发明提供的技术方案,基于嵌入式的苹果采后田间分级检测系统,系统的工作和开发的过程包括如下步骤:

a、建立检测苹果缺陷和大小的级联分类器,所述建立的检测苹果缺陷和大小的级联分类器位于ARM内;

b、传输系统滚动传输待检测的苹果;

c、CMOS相机获取苹果表皮的图像信息,并通过USB传输到ARM;

d、ARM接受采集到的苹果图像,并送到建立好的分类器中进行模式匹配,调用OpenCv机器视觉库,实现苹果缺陷和大小的检测,返回检测结果;

e、执行机构接收ARM发送的分级结果信号,并启动相应的执行动作,实现苹果缺陷和大小的分级。

所述步骤a中,苹果的缺陷和大小的检测,是基于Haar-like特性的改进的AdaBoost级联分类器,所述步骤a包括如下步骤:

a1、选取500个形状、大小、颜色、分布广的苹果,每个苹果拍摄4张图片,大小为640×480,共2000张图片作为检测苹果大小的正样本,正样本归一化到30×30的灰度图,选择6000张不包括苹果的图片作为负样本,大小为640×480。同时让苹果碰撞,产生缺陷和疤痕,每个苹果作出4个碰撞,抠出缺陷部位的图像,共2000张图片作为检测缺陷的正样本,正样本图像归一化到30×30的灰度图,选择6000张不包括缺陷图片作为负样本,大小为640×480。下面介绍训练检测缺陷的分类器构造过程,检测苹果大小的分类器训练过程和检测缺陷分类器的步骤相同。

a2、利用图像的Haar-like特性构造正负样本的特征值:其中1≤j≤15,Haar-like包括四类15种特征:边缘特征(4种),线特征(8种),中心环绕特征(2种),对角线特征(1种)。其中Featurej代表第j种Haar-like块的特征值;w1是第j种Haar-like的权值;w2是第j种Haar-like块中黑色矩形的权值。RectSum(r1)代表第j种Haar-like块中包含的所有象素点的象素值之和。RectSum(r2)代表第j种Haar-like块中黑色矩形块所包含象素的象素值之和。

a3、构造正负样本的积分图,积分图的构造方式是一幅图像的位置(n,m)处的值q(n,m)是原图像(n,m)左上角方向所有像素的和:积分图构建算法如下:

(1)用s(n,m)代表行方向的累加和,初始化s(n,-1)=0。

(2)用q(n,m)代表一个积分图像,初始化q(-1,m)=0。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310419877.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top