[发明专利]基于AdaBoost和主动形状模型的受电弓识别方法有效
申请号: | 201310566693.6 | 申请日: | 2013-11-15 |
公开(公告)号: | CN103745238B | 公开(公告)日: | 2018-04-24 |
发明(设计)人: | 岳安志;孟瑜;赵忠明;汪承义;安金杰 | 申请(专利权)人: | 中国科学院遥感与数字地球研究所 |
主分类号: | G06K9/66 | 分类号: | G06K9/66 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100101 北京市朝阳区大*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 adaboost 主动 形状 模型 受电弓 识别 方法 | ||
技术领域
本发明属于计算机数字图像处理与模式识别技术领域,主要涉及电动牵引机车使用的受电弓在线自动识别方法,具体涉及一种基于AdaBoost和主动形状模型的受电弓识别方法。
背景技术
电力牵引机车受电弓是电气化铁路电力机车从接触网上受取电源的装置。受电弓弓头破损、碳滑板过度磨耗不仅影响电力机车的正常供电,甚至会造成轨道交通的中断。因此作为直接与接触网接触的取流关键设备-受电弓碳滑板的状态极为关键,它关系到机车能否稳定、可靠地从接触线取电。实际管理中,相关部门需要对受电弓碳滑板运行状态进行定期检测,以保证机车的稳定、安全运行。随着我国轨道交通和高速铁路的飞速发展,对受电弓的可靠运行提出了更高的要求,实现对受电弓运行状态的在线自动识别具有重要意义。
目前国内外受电弓状态的检测方法主要包括入库静态检测、机载检测系统和在线定点式检测3种方式。
入库静态检测要求接触网必须在受电弓检测前断电,且通常只能在机车入库停车后才能检测,不能实现受电弓的在线自动检测。在实际运作中需要投入较大规模的人力、成本较高。详见文献:谢力.基于图像处理的受电弓状态检测技术研究:[硕士学位论文]:西南交通大学,2009。
机载受电弓检测方法属于一种在线自动检测方法。主要包括2种方式,其一是通过在机车上安装光、电、力学等多种传感器采集受电弓位置、碳滑板的磨耗,以及受电弓弓头左右偏移量状态等信息对受电弓进行检测,但传感器获取的受电弓运行状态信息容易受机车运行过程中产生的震动的干扰;其二是将光纤内埋式磨损传感器嵌入受电弓滑板中,当受电弓滑板收到接触网的冲击作用而产生磨损时或者产生缺失时,传感器给出相应的磨损信号。该方法的主要缺点是对材料的要求比较高,要在受电弓滑板中内嵌传感器,材料工艺要求高,受电弓滑板材料结构改变可能会降低受电弓的使用寿命,提高了成本。
在线定点式自动检测方式,国内外主要有基于超声波传感器的检测和基于图像的检测方法。超声波传感器检测方法多见于国外机车系统,该方法存在的显著不足是超声波信号容易受超声波工作距离、超声波信号强弱和受电弓运行中的姿态的影响。
近年来,国内外出现了许多基于在线获取图像的受电弓检测方法。该方法核心包括拍照和识别2部分,首先完成受电弓图像的在线采集,然后采用数字图像处理方法对采集到的图像进行仔细分析,最终获取受电弓在线运行状态。该方法的优势非常明显,可以在机车行驶过程中做到在线自动识别;缺点是精度依赖于拍照系统采集图像的质量,对受电弓在线拍照系统精度要求比较高。国内目前已有厂商和科研单位正在研发基于图像的受电弓在线运行状态的识别系统,存在的问题主要集中于:1)受电弓图像采集质量较低,不利于后续图像处理与分析;2)对机车运行速度有限制,难以实现真正的在线识别;3)采集到的受电弓图像背景复杂、不统一,图像处理方法难以进行精确的受电弓定量识别,相关方法亟需进一步改进。详见南京大学于2012年公开的专利《高速机车受电弓滑板磨损自动检测装置》,专利公开号:CN102507600A。
基于可变模型对目标物体特征点定位的研究取得了很大成就,特别是对于图像中的目标物体变化很大的情况。可变模型的基本思想是:建立一个目标物体的通用模型,对于任意给定图像,如果图像中有与该模型相同的目标物体,则可以根据物体图像的内部和外部特征与模型之间的差异,通过调整模型参数将模型进行变化,其形状和纹理能够与目标物体在一定误差内实现匹配,详见文献:Cootes T.F.Deformable Object Modelling and Matching.In:Kimmel R,Klette R,Sugimoto A,eds.Computer Vision-Accv2010,Pt I.Berlin:Springer-Verlag Berlin;2011:1-10.
英国曼彻斯特大学(University of Manchester)的Tim.Cootes等人提出的主动形状模型ASM(Active Shape Models)是实现上述思想的一个典型代表。该方法已成为当前主流的目标定位方法,在目标对象的定位中,特别是在人脸检测、手势识别和医学人体器官图像检测方面得到了广泛的应用,详见文献:Cootes T.F.,C.J.Taylor,D.H.Cooper,et al.Active Shape Models-Their Training and Application.Computer Vision and Image Understanding.1995,61(1):38-59.
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院遥感与数字地球研究所,未经中国科学院遥感与数字地球研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310566693.6/2.html,转载请声明来源钻瓜专利网。