[发明专利]计算机基于层叠式主成分分析法智能识别视频中人眼状态的方法有效
申请号: | 201310624554.4 | 申请日: | 2013-11-27 |
公开(公告)号: | CN103745192B | 公开(公告)日: | 2016-11-16 |
发明(设计)人: | 张伟;成波 | 申请(专利权)人: | 苏州清研微视电子科技有限公司;清华大学苏州汽车研究院(吴江) |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 苏州创元专利商标事务所有限公司 32103 | 代理人: | 范晴;夏振 |
地址: | 215200 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 计算机 基于 层叠 成分 分析 智能 识别 视频 中人 状态 方法 | ||
技术领域
本发明属于智能交通技术领域,具体涉及一种计算机基于层叠式主成分分析法智能识别视频中眼睛状态的方法。
背景技术
眼睛是人体面部最重要的特征,在数字图像处理和计算机视觉研究与应用中有着极为重要的作用,眼睛睁闭状态的检测是虹膜识别、视线跟踪和驾驶员疲劳检测等系统的关键环节,检测的准确率直接影响到系统的性能。然而,在实际应用过程中,不均匀光照、光斑、睫毛和眼镜框等诸多因素的影响,使眼睛睁闭状态识别成为了一个极具挑战性的任务。
目前的眼睛睁闭状态检测方法主要有以下两大类:基于眼球/瞳孔检测的方法和基于眼部结构特征的方法。前者主要通过检测眼部图像是否含有眼球/瞳孔来判断眼睛的状态;后者主要根据眼部整体结构特征的变化,如上下眼睑的变化来判断眼睛的状态。基于眼球/瞳孔检测的方法主要有灰度积分投影法和Hough变换检测瞳孔等算法:灰度积分投影法由于只用到图像的灰度信息,计算量少,速度快,但当出现睫毛、镜框和光斑等因素干扰时,该算法将变得不再适用;Hough变换算法需要进行边缘提取,而边缘的提取往往难度较大,易受到睫毛和不均匀光斑等的干扰,且拟合速度较慢,很难达到实时要求。基于眼部结构特征的算法主要有可变性模板法和神经网络法:可变性模板或将主动形状模型(ASM,Active Shape Model)用于检测上下眼睑的方法较为耗时,且检测效果受模板参数的影响;神经网络法的泛化能力较差,而样本的选取往往很难覆盖实际应用中的各种情况。而基于多种策略组合的研究状态检测方法,需要过多的人为参与,检测效果因人而异,且此方法流程流于繁琐,检测速度很难达到实时要求。本发明因此而来。
发明内容
本发明提供的一种计算机基于层叠式主成分分析法智能识别视频中眼睛状态的方法,解决了现有技术中计算机进行眼睛睁闭状态的识别时普遍存在方法实时性差、易受多种因素的影响、鲁棒性差的问题。
为了解决现有技术中的这些问题,本发明提供的技术方案是:
一种计算机基于层叠式主成分分析法智能识别视频中人眼状态的方法,其特征在于所述方法包括以下步骤:
(1)采集人眼训练图像,对人眼训练图像进行第一层主成分分析,获得特征眼子空间;将每幅人眼训练图像投影到特征眼子空间中,分别得到一组系数向量,组合得到一个系数矩阵;对系数矩阵进行第二层主成分分析,得到系数子空间;
(2)将视频中每幅待测人眼图像投影到步骤(1)得到的特征眼子空间上,分别得到一组系数向量;将系数向量分别投影到步骤(1)获得的系数子空间中得到另一组新系数向量;取出所有新系数向量的第一个值作为系数值;以视频中的帧数为x轴,相应帧人眼图像对应的系数值为Y轴构建一条帧数-系数值的原始数据曲线;
(3)进行均值滤波处理获得一条与原始数据曲线相对应的基准曲线;将原始数据曲线和基准曲线上的对应值相减并取绝对值,就得到一条差值曲线;
(4)将差值曲线上的差值与预设的系数阈值作比较;若差值小于系数阈值,则判定为视频中人眼状态为睁眼状态;若差值大于系数阈值,则判定视频中人眼状态为闭眼状态。
优选的,所述方法步骤(3)中均值滤波处理是以某一帧人眼图像为中心获取前后若干帧人眼图像对应的系数值,然后求取它们的平均值作为该帧原始系数值的基准值;以视频中的帧数为x轴,相应帧原始系数值的基准值为Y轴构建一条帧数-基准值的基准曲线。
优选的,所述方法中每一帧的待测人眼图像和人眼训练图像均经归一化处理成大小相同,且人眼区域均为右眼区域或左眼区域的图像。
优选的,所述方法步骤(1)中假设人眼训练图像共有K幅,归一化处理后大小均为n×m的图像,将每幅图像按列优先构成一个n×m的列向量,即:
x=(b11b21…bn1b12b22…bn2…b1nb2n…bnm);
以每幅图像的列向量为一列,构成一个维数为(n×m)×K的矩阵X, 即:X=(x1,x2,...,xi),i=1,2,...,K。
优选的,所述方法步骤(1)中对人眼训练图像进行第一层主成分分析,获得特征眼子空间的步骤包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州清研微视电子科技有限公司;清华大学苏州汽车研究院(吴江),未经苏州清研微视电子科技有限公司;清华大学苏州汽车研究院(吴江)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310624554.4/2.html,转载请声明来源钻瓜专利网。