[发明专利]基于联合稀疏表达的遥感影像多尺度面向对象分类方法有效
申请号: | 201310628634.7 | 申请日: | 2013-11-29 |
公开(公告)号: | CN103593853A | 公开(公告)日: | 2014-02-19 |
发明(设计)人: | 李家艺;张洪艳;张良培 | 申请(专利权)人: | 武汉大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 张火春 |
地址: | 430072 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 联合 稀疏 表达 遥感 影像 尺度 面向 对象 分类 方法 | ||
技术领域
本发明涉及光学遥感数据分析技术领域,尤其涉及一种基于联合稀疏表达的遥感影像多尺度面向对象分类方法。
背景技术
随着遥感技术快速发展,尤其是近年来高空间分辨率遥感卫星的发射,卫星遥感已经越来越多的应用到科学与生产的各个领域,如数字城市建设、大比例尺资源环境调查、环境监测、精密农业、考古等专项遥感监测。高分辨率遥感数据本身具有以下特点:1)单幅影像数据量显著增加;2)成像光谱波段数变少;3)地物的几何结构和纹理信息更加明显。传统的像素级遥感影像分类效率以及其所能获得的结果信息都十分有限,而且处理过程中往往会存在大量椒盐错分现象。
目前,国际上高分辨率遥感影像分类技术的发展趋势主要有两大类:
(1)面向像素的影像分类技术
该类技术充分挖掘高空间分辨率遥感影像的丰富空间信息,从空间特征提取、分类器构建以及分类后处理三个方面进行深入研究。具体思路为:利用影像空间信息,提取上下文、纹理以及形状特征,结合光谱特征融合生成具有更好地物描述能力的增广特征来提高可分能力;融合多分类器的分类系统,充分利用不同分类器之间的互补信息并提供一个置信度更高的类别标记;利用初始硬分类得到的标记考虑上下文信息进行分类的后处理。
该类技术挖掘了高分辨率遥感影像的空间信息,一定程度上提高了解译精度,但依然存在以下问题:1)未考虑象元大小与地物类别、地块面积的关系;2)影像内部的光谱多变性产生“椒盐”错分现象;3)逐像素的处理耗时。
(2)面向对象的影像分类技术
该类技术作为遥感影像分类领域的重大变革,最重要的特点是分类的最小单元是“同质”多边形对象(即,图斑),而不是单个像素。在高分辨率遥感领域,这种对象可通过分割技术获得。通过对对象操作,不仅可获得地物的光谱信息,更能获得包括纹理、形状大小、上下文等丰富的空间信息,充分利用高分辨率遥感影像的特点,使分类结果更接近于目视判读的效果,大大提高了分类精度。在面向对象的影像分类方法中,影像分割是关键,分割效果决定分类精度。由于高分辨率遥感影像空间分辨率高、噪声大、尺度跨度大,选择出某一个单一的最优图斑尺度具有相当的局限性,容易造成过分割或者欠分割现象,从而影响对影像对象的判读。另一方面,手动调节分割尺度要求用户具有一定的专业知识,加剧了面向对象分类技术自动化处理的难度。
发明内容
针对现有高分辨率遥感影像分类技术存在的问题,本发明提出了一种基于联合稀疏表达的遥感影像多尺度面向对象分类方法。
本发明充分利用了影像的空间信息和光谱信息,并利用联合稀疏表达获取满足均质性要求和重建效果要求的图斑进行标记,将影像分割与影像分类有机结合,利用联合稀疏表达分类理论标记图斑的类别信息。
本发明的技术方案如下:
基于联合稀疏表达的遥感影像多尺度面向对象分类方法,包括步骤:
步骤1,结合空间属性特征和光谱属性特征构造影像数据的增广特征;
步骤2,基于训练像素样本和增广矩阵构造过完备字典,训练像素样本包括不同类别的像素样本,过完备字典覆盖了所有类别的训练像素样本在增广特征空间中的分布;
步骤3,采用面向对象的影像分割方法对影像数据进行初始化分割获得初始化的图斑;
步骤4,基于图斑内像素在增广特征空间的表达构造图斑的联合信号矩阵,采用过完备字典对图斑的联合信号矩阵进行联合稀疏表达,从而获得图斑的联合稀疏表达矩阵;
步骤5,基于联合稀疏表达矩阵对图斑依次进行均质性分析与重建效果分析,所述的均质性分析基于稀疏重建过程中各类别像素的贡献程度来判断图斑是否满足均质性水平,所述的重建效果分析对基于图斑的联合系数表达矩阵重建的信号进行分析;
步骤6,根据均质性分析与重建效果分析结果对图斑做如下操作:
1)图斑均满足均质性水平和重建效果时,将该图斑标记为“稀疏表达过程中起到最多贡献的字典基对应的类别”;
2)图斑满足均质性水平但不满足重建效果时,该图斑为“过分割图斑”,对该图斑放大分割尺度参数进行再次分割,对再次分割获得的新图斑执行步骤4;
3)当图斑不满足均质性水平时,该图斑为“欠分割图斑”,对该图斑缩小分割尺度参数进行再次分割,对再次分割获得的新图斑执行步骤4。
步骤1中所述的增广特征是将属性特征矢量叠加构造获得,所述的属性特征包括空间特征和光谱特征。
步骤3中所述的初始化分割采用均值漂移分割法。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310628634.7/2.html,转载请声明来源钻瓜专利网。
- 上一篇:能力指示信息处理方法及装置
- 下一篇:辅服务小区分组修改方法、终端及系统