[发明专利]一种基于变分与分数阶微分的图像融合与超分辨率实现方法有效

专利信息
申请号: 201410088525.5 申请日: 2014-03-12
公开(公告)号: CN103854267A 公开(公告)日: 2014-06-11
发明(设计)人: 李华锋;余正涛;毛存礼;郭剑毅;李小松;刘志远 申请(专利权)人: 昆明理工大学
主分类号: G06T5/50 分类号: G06T5/50
代理公司: 暂无信息 代理人: 暂无信息
地址: 650093 云*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 分数 微分 图像 融合 分辨率 实现 方法
【说明书】:

技术领域

发明涉及一种基于变分与分数阶微分的图像融合与超分辨率实现方法,属于图像处理领域以及信息融合领域。

背景技术

多源图像融合是把不同类型的传感器(或同一类型传感器在不同时刻或方式下)所获取的有关某一具体场景的多幅图像信息进行综合,生成一幅新的有关此场景的解释,以便对该场景或目标进行更为清晰、完整、可靠的描述。通过综合而获得的图像,能有效克服单一传感器图像数据在几何、光谱、时间以及空间分辨率方面的差异性和局限性,这非常有利于对事件或物理现象进行识别、理解和定位。目前,该技术因具有冗余性、互补性、时间优越性、成本相对较低等优点而被广泛应用于计算机视觉、医疗成像与诊断、遥感测绘、军事等相关领域。

国内外学者在多源图像融合方面取得了一系列研究成果,提出了一些性能优异的融合算法。这些算法主要有基于多尺度分解的融合方法、基于假彩色的融合方法、基于神经网络的融合方法等。这些传统的融合方法通常需要假设源图像具有较好的空间分辨率和清晰度。当这些假设被满足时,融合方法便能获得较为满意的融合效果。然而,现实中的许多成像系统,如红外成像仪和CCD照相机等因固有传感器阵列排列密度的限制,使得采集到的图像分辨率不可能很高。这使得融合结果的分辨率达不到应用的需要或不能满足人眼的视觉观察需要。显然,这类对源图像具有较高要求的融合方法极大地限制了算法的应用推广,更不能满足现实需求。针对这一问题通常可先对源图像进行超分辨率实现,然后对其融合;或者先对低分辨率图像进行融合然后再对融合结果进行超分辨率实现。这样做虽然都能得到分辨率较高的融合图像,但很容易把第一步图像处理过程中引入的一些虚假信息传送到最终的结果中,并影响最终结果的视觉效果。

为解决传统图像融合方法功能单一,且对待融合图像空间分辨率具有较高要求的不足,本发明设计出能同时执行图像融合与分辨率提升的变分与分数阶微分方法。该方法从应用的实际需求出发,避免了传统方法对源图像具有较超分辨率的要求。从这一层面来说,该研究不再局限于多源图像信息利用率的保持上,更重要的是利用变分与分数阶微分的某些特性构建出具有双重或多重功能的图像融合模型,以此提升融合图像的空间分辨率,以便于人眼视觉的观察以及融合结果的后续处理。

发明内容

本发明提供了一种基于变分与分数阶微分的图像融合与超分辨率实现方法,以用于解决传统图像融合方法功能单一,且对待融合图像空间分辨率具有较高要求的不足。

本发明的技术方案是:一种基于变分与分数阶微分的图像融合与超分辨率实现方法,所述方法的步骤如下:

A、将多源待融合的l幅低分辨率图像                                               看成是一幅多通道图像,同时引入带权值的多通道图像;其中,为第i幅图像的权系数;

B、采用步骤A中带权值的多通道图像f(x,y)的结构张量的特征值与特征向量来描述其自身信息的变化,并由此得到带权值多通道图像f(x,y)的梯度信息V(x,y);

C、在超分辨率实现上,假设理想的超分辨融合图像I是已知的,通过下采样算子矩阵H作用于该图像上来获得低分辨率融合图像HI

D、根据步骤B中所得到的梯度信息V(x,y)与步骤C所获取的低分辨率融合图像HI的梯度信息具有相同或相近的梯度特征,建立图像融合与超分辨率实现模型;其中,表示待融合源图像所在的矩形区域,为梯度算子;

E、在步骤D建立的图像融合与超分辨率实现模型中引入分数阶微分与分数阶全变分的噪声抑制项,得到新的模型;其中,,和分别为图像I关于xy的阶偏微分,为阶梯度算子,、为大于零的权衡因子,为的次数;

F、在步骤E的融合模型中,引入双向滤波处理来抑制人工锯齿和边缘附近的震荡,从而得到更新后的图像融合模型;其中,为双向滤波的积分形式;,,,k1cN与为常数;

G、对步骤F所获得的融合与超分辨率实现模型采用梯度下降法进行求解,并对结果进行离散化处理,得到以时间为演化参数的迭代公式如下:;其中,、、分别为分数阶微分算子、以及下采样算子矩阵H的共轭算子,为时间增量;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410088525.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top