[发明专利]一种可视化OLAP的应用实现方法及系统有效
申请号: | 201410167265.0 | 申请日: | 2014-04-24 |
公开(公告)号: | CN103955502B | 公开(公告)日: | 2017-07-28 |
发明(设计)人: | 陈思恩;林漳希;郭星晖;吴炎泉 | 申请(专利权)人: | 科技谷(厦门)信息技术有限公司 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 广州市红荔专利代理有限公司44214 | 代理人: | 张文 |
地址: | 361009 福建省厦门市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 可视化 olap 应用 实现 方法 系统 | ||
技术领域
本发明涉及大数据环境下的在线分析性处理的方法及系统,具体是一种可以直接对海量明细数据进行建模,并实时分析的方法及系统。
背景技术
OLAP即联机分析处理,联机分析处理(OLAP)系统是数据仓库系统最主要的应用,专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持,可以根据分析人员的要求快速、灵活地进行大数据量的复杂查询处理,并且以一种直观而易懂的形式将查询结果提供给决策人员,以便他们准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的方案。近年来,OLAP已成为处理数据仓库和商业智能使用的多维数据的流行方法,但是OLAP还存在如下问题:
OLAP分析需要进行大量的数据分组和表间关联,这些虽然是传统关系型数据库的强项,但是在大数据环境下,在线分析的实时性能将是传统数据库OLAP的瓶颈。
OLAP存在的最大问题还有业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个多维立方体(Cube)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
面对实时性能瓶颈问题,虽然可以使用特定的针对BI优化的数据库,比如采用了列存储或混合存储、压缩、延迟加载、对存储数据块预统计、分片索引等技术。但还是无法解决TB级数据量的在线多维分析。
发明内容
本发明的目的在于提供一种基于Hadoop数据存储平台的可视化OLAP的应用实现方法及系统,将OLAP分析的数据以结构化形式存储于Hadoop集群,使其存储容量增大,提高存储扩展性和安全性。
为实现上述目的,本发明采用以下技术方案:
一种可视化OLAP的应用实现方法,包括如下步骤:
S1.通过ETL工具,将海量的关系型数据和数据文件进行高速传输和合并形成业务数据,将业务数据存储在支持分布式、列式存储的Hadoop集群中;
S2.通过可视化定义工具在业务数据中定义维度和度量,并自动生成多维分析的MDX语言,同时使用可视化的分析器通过GUI执行已经定义的多维分析命令;
S3.多维分析服务器接收提交的分析命令,使用Impala对提交的命令进行分析,分析以后将Hadoop中的数据抽取到内存中,进行分布式计算,最后将返回的结果生成用户自定义报表。
其中,步骤S1中所述的ETL工具为Storm、Kafka、Flume、Kettle、Sqoop中的一种或几种。
其中,步骤S1中所述的业务数据存储在Hadoop的Hdfs和Hbase中。
其中,步骤S3中多维分析处理过程为:首先多维分析服务器与Impala结合,通过hive2server JDBC驱动连接Impala服务,执行其SQL查询引擎访问存储在Hbase中的事实数据,其次使用Mondrian Server应用聚合策略,通过分布式的分组查询,将聚合数据读取到内存中形成缓存数据,最后通过可视化工具,对聚合后的缓存数据进行展示。
优选地,所述的可视化工具为Pivot表,饼图,线状图,条形图和分析图中的一种或几种。
本发明还公开了一种可视化OLAP的应用实现系统,包括模式管理器,带可视化工具的表现单元,解析、校验、执行MDX查询的计算单元,维护创建聚合缓存的聚合单元,及存储单元,所述的表现单元置于Tomcat服务器上,所述的模式管理器、聚合单元和计算单元设于同一台包含核心框架的服务器上,所述的存储单元放置在Hadoop集群服务器上,通过远程Hive和Impala的Java API连接访问。
其中,所述的计算单元包括集成连接的维度度量定义模块,多维分析执行模块及可视化分析查询器。
采用以上技术方案后,本发明具有以下有益效果:
1.解决了在线分析的性能问题,利用分布式强大的并行化处理能力,通过Hive和Impala进行数据交互,有效解决在线分析性处理在关系型数据库的性能短板。可有效进行千亿乃至万亿数据级别的在线多维统计分析和机器学习。
2.解决了分析维度难以改变的问题。由于采集来的数据本身就是包含大量冗余信息的,利用Hadoop中数据存储结构的特征,可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度,有效满足OLAP分析中的维度不断变化的需求。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于科技谷(厦门)信息技术有限公司,未经科技谷(厦门)信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410167265.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:齿轮齿条传动装置
- 下一篇:翻辊倒向式往复运动机构