[发明专利]一种基于半监督特征选择的语音情感识别方法有效

专利信息
申请号: 201410216935.3 申请日: 2014-05-21
公开(公告)号: CN104008754B 公开(公告)日: 2017-01-18
发明(设计)人: 文贵华;孙亚新 申请(专利权)人: 华南理工大学
主分类号: G10L25/63 分类号: G10L25/63;G10L17/14;G10L17/02;G10L17/04
代理公司: 广州市华学知识产权代理有限公司44245 代理人: 蔡茂略
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 监督 特征 选择 语音 情感 识别 方法
【说明书】:

技术领域

发明涉及语音信号处理和模式识别研究领域,特别涉及一种基于半监督特征选择的语音情感识别方法。

背景技术

随着信息技术的不断发展,社会发展对情感计算提出了更高的要求。例如在人机交互方面,一个拥有情感能力的计算机能够对人类情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并能有效减轻人们使用电脑的挫败感,甚至能帮助人们理解自己和他人的情感世界。例如采用此类技术探测驾驶司机的精力是否集中、感受到的压力水平等,并做出相应反应。此外,情感计算还能应用在机器人、智能玩具、游戏、电子商务等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。情感也反映了人类的心理健康情况,情感计算的应用可以有效地帮助人们避免不良情绪,保持乐观健康的心理。

人的面部表情、语音、生理指标等都能在一定程度上反映人类的情感。目前使用在语音情感识别中的特征选择方法有很多,广泛使用的是顺序前进特征选择方法(Sequential Forward Feature Selection)。但是顺序前进特征选择方法是一种贪心算法,其忽略了数据的流形结构和无标签样本提供的信息。然而数据的流形结构和无标签样本提供的信息对语音情感识别有非常重要的作用。首先数据的流行结构对语音情感识别有非常重要的作用,这是因为说话人之间的差异性比较大,并且待识别情感的人的有标签样本很难出现在训练数据中,如果在特征选择算法中只考虑数据的类别结构进行特征选择,那么选择的特征会过拟合训练数据而对新的测试样本识别能力不强。其次待识别情感的人的无标签样本提供的信息也有非常重要的作用,同样因为说话人之间的差异性比较大,如果仅仅依靠训练样本的流形结构指导特征选择,可能导致特征选择的结果与能够突出待识别情感说话人的特征有较大差异。

另外,语音数据的流形结构主要受到以下三个因素的影响:情感、说话人、语句,并且说话人对语音数据流形结构的影响非常严重,所以仅仅考虑了数据流形结构的特征选择算法不能直接应用于语音情感识别。

为此,提出一种能够考虑语音数据的流形结构、但是能减小说话人对语音数据流形结构影响的特征选择方法具有很高的研究价值。

发明内容

本发明的主要目的在于克服现有技术的缺点与不足,提出一种基于半监督特征选择的语音情感识别方法,该方法利用待识别情感说话人的无标签样本提供的说话人信息和流形结构信息,能够很好的减少说话人之间的不同对语音情感识别造成的负面影响,同时能够保持数据的流形结构和类别结构,使得特征选择结果对新说话人的情感有较好的识别能力。

本发明的目的通过以下的技术方案实现:一种基于半监督特征选择的语音情感识别方法,包括步骤:

(1)训练阶段:

(1-1)提取所有有标签样本的语音信号特征以及某一待识别情感说话人的无标签样本的语音信号特征;

(1-2)对所有特征执行特征统计;

(1-3)对所有的特征统计结果执行归一化算法;

(1-4)使用半监督特征选择算法突出该待识别情感说话人语音情感变化的特征,得到特征选择向量;

(1-5)使用特征选择结果训练针对该待识别情感说话人的语音情感分类器;

(1-6)所有需识别情感的说话人均按照上述步骤(1-1)—(1-5)得到对应的分类器;

(2)识别阶段:提取待识别样本的语音信号特征,对特征进行特征统计,对特征统计结果执行归一化算法,然后根据步骤(1-4)得到的特征选择向量计算特征选择结果,然后将特征选择结果代入步骤(1-6)得到的该说话人对应的分类器,即获得待识别样本的情感类别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410216935.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top