[发明专利]超低温制备纯相BiFeO3有效
申请号: | 201410257322.4 | 申请日: | 2014-06-11 |
公开(公告)号: | CN104005079A | 公开(公告)日: | 2014-08-27 |
发明(设计)人: | 李锦;闫灯周;孙言飞 | 申请(专利权)人: | 新疆大学 |
主分类号: | C30B7/10 | 分类号: | C30B7/10;C30B29/22;C01G49/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 830046 新疆维吾尔*** | 国省代码: | 新疆;65 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 超低温 制备 bifeo sub | ||
技术领域
本发明属于材料生长领域,通过改进实验方法,突破了以往的所有文献报道水热法制备BiFeO3的最低温度。
背景技术
由于BiFeO3的特殊物理性能,科研工作者们对BiFeO3的研究越来越广泛,近年来主要针对其磁性,光性能,介电性能等进行了广泛的研究。
制备BiFeO3的方法有很多,如固相烧结法,溶胶凝胶法,水热法等,这其中水热法是这么多方法中所需的合成温度最低的一种方法,也是最经济实用的一种方法。但在水热法中合成纯相BiFeO3的温度范围较窄,据文献报道一般集中在180℃-240℃范围内,温度过低容易导致合成Bi25FeO40杂相,常见的文献报道最低将合成温度降低至150℃,最近一篇文献报道通过改进实验,成功低将合成温度降低至120℃,是较大的突破,但至今,没有人确定在水热法中,影响合成纯相BiFeO3的具体物理因素。
在180℃-240℃范围内制备纯相BiFeO3:如2010年Seung Ho Han等利用水热法制备出纯相BiFeO3,参阅Ceramics International.第36期第1366页。
在150℃制备纯相BiFeO3:如2012年Xiuli Chen等利用水热法在150℃低温制备出纯相BiFeO3,参阅J Mater Sci: Mater Electron.第23期第1500页。
在120℃制备纯相BiFeO3:如2013年Yuxia Sun等通过改进水热法在120℃低温制备出纯相BiFeO3,参阅Ceramics International.第39期第4652页。
在108℃下制备纯相BiFeO3:如2014年李锦等通过水热法在108℃低温制备出纯相BiFeO3,参阅专利“一种低温制备BiFeO3方法”专利号:201410194449.6。
发明内容
本发明的目的在于通过在水溶液里添加低沸点的有机溶剂在100℃以下来提供压强,来进一步降低合成纯相BiFeO3的最低温度。
本发明是通过以下工艺过程实现的:所用铋源为Bi(NO3)3 ·5H2O(99%),称取4.8997g(0.1mol),所用铁源为Fe(NO3)3·9H2O (98.5%),称取4.1015g(0.1mol)。将称量好的样品放入容积为50ml的聚四氟乙烯水热反应釜中,量取15ml的乙醇或甲醇注入反应釜中,用磁力搅拌机搅拌30min。称量一定的NaOH溶于15ml去离子水,用磁力搅拌机搅拌10min,将所得的NaOH溶液倒入聚四氟乙烯反应釜中,在磁力搅拌机上搅拌1h。将聚四氟乙烯反应釜在设定的温度下水热处理一段时间,水热反应后,将反应釜自然冷却至室温,所得的样品用去离子水和酒精反复清洗直到去除所有可溶性盐,于60℃下烘干。水热反应中NaOH的浓度为6M和4M,在80℃-100℃下反应24h-72h。
本发明的所制得的样品为纯相BiFeO3,所制得的样品为单晶,100℃下制得的样品的XRD图如图1所示,100℃下所制得样品的SEM图如图2所示,90℃和80℃下所制得样品的XRD图如图3所示,90℃和80℃下所得样品的SEM图如图4所示,80℃下所制得样品的HRTEM图如图5所示。本发明所得纯相BiFeO3,特征为在通过在水溶液中添加低沸点的有机溶剂来提供压强,突破了以往文献所报道的合成纯相BiFeO3的最低温度,为以后工业生产提供了一种新方法。
附图说明
图1 100℃下以NaOH为6M(1)和4M(2)采用水和乙醇的比例为1:1时反应24h合成样品的XRD图。
图2 100℃下以NaOH为6M(a, b)和4M(c, d)采用水和乙醇的比例为1:1时反应24h合成样品的SEM图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于新疆大学,未经新疆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410257322.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:蒸汽清洁设备
- 下一篇:饮料酿造装置的送包脱包机构
- 一种制备BiFeO<sub>3</sub>薄膜的方法
- 在SrTiO<sub>3</sub>衬底上调控多铁铁酸铋外延薄膜带隙的方法
- 一种梯度铁电薄膜太阳能电池的制备方法
- BiFeO<sub>3</sub>锂离子电池阳极材料的制备方法
- BiFeO<sub>3</sub>钠离子电池阳极材料的制备方法
- 一种制备纯相BiFeO<sub>3</sub>陶瓷的湿化学方法
- 一种Tb、Mn 和Cu 三元共掺杂的低漏电流BiFeO<sub>3</sub> 薄膜及其制备方法
- 一种B位Mn和Ni共掺杂高剩余极化强度的BiFeO<sub>3</sub> 薄膜及其制备方法
- 一种Tb和Mn共掺杂高剩余极化强度的BiFeO<sub>3</sub> 薄膜及其制备方法
- 一种BiFeO<base:Sub>3
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法