[发明专利]一种适用于城市道路车道线预测及预警方法有效
申请号: | 201410260194.9 | 申请日: | 2014-06-12 |
公开(公告)号: | CN104008645A | 公开(公告)日: | 2014-08-27 |
发明(设计)人: | 王耀南;彭湃;赵科;凌志刚;张楚金;卢笑 | 申请(专利权)人: | 湖南大学 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;G08G1/16;G06K9/00 |
代理公司: | 长沙市融智专利事务所 43114 | 代理人: | 黄美成 |
地址: | 410082 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 适用于 城市道路 车道 预测 预警 方法 | ||
技术领域
本发明属于汽车主动安全技术领域,涉及一种适用于城市道路车道线预测及预警方法。
背景技术
随着社会经济的快速发展,汽车的数量越来越多,这给人们的生活带来便捷的同时,也带来了频发的交通事故。据统计,每年世界范围内的公路交通事故中大约有1000万人受伤,这些事故直接造成的经济损失约占世界GDP的13%。根据美国联邦公路局估计,美国2002年所有致命的公路交通事故中大约有44%与车辆偏离车道有关。为了有效减少和避免车道偏离交通事故的发生,国内外研究机构和汽车研发、生产厂商越来越重视车道偏离报警系统(Lane Departure Warning System,LDWS)的研究。它是一种辅助驾驶员减少车辆无意识的车道偏离,以防发生交通事故的系统。随着计算机视觉技术的快速发展,基于视觉的LDWS具有成本低廉、信息量丰富等优点,因此机器视觉技术被广泛地应用于车道偏离报警系统中。
基于视觉的车道偏离报警系统的研究主要是针对车道线的检测以及在此基础上的车道偏离报警决策。当前基于视觉的车道线检测算法可以归纳为基于道路特征的方法和基于道路模型的方法。基于特征的方法一般根据车道线的颜色、边缘特征等进行识别,算法简单,但是仅适用于光照良好的干净路面,其抗干扰性和鲁棒性不佳。基于模型的方法通常采用直线、曲线、分段直线、样条曲线模型等来进行车道线识别,该方法鲁棒性好,但是模型越复杂,确定模型参数值的计算量也就越大。目前的车道偏离决策主要有以下几种:基于当前车道位置的CCP(Car's current position)报警模型;基于车辆将横越车道边界时间的TLC(Time to Lane Crossing)报警模型;基于左右车道线在图像中夹角和的方法等。
前面提出的车道检测和偏离报警的算法大部分都是针对路况优越的结构化道路进行的。而对于城市半结构化道路,由于路况复杂多变、车道标识线缺损、受污染严重、路面干扰标识较多等诸多因素,现有算法出现了道路模型适应性不强、车道线可识别性不高、受干扰严重等问题,进而导致车道偏离报警准确性较低。因此,针对城市道路环境,需要研究出一种鲁棒性好、准确性高、实时性好的车道识别方法,进而建立一个预报准确、及时的偏离报警系统,达到辅助驾驶的目的。
发明内容
为了克服上述现有技术的不足,本发明提供了一种适用于城市道路车道线预测及预警方法,是一种抗干扰性强、准确性高、实时性好的城市道路车道线检测方法,并且在准确检测出车道线的基础之上,进行及时预报和准确的偏离报警。
一种适用于城市道路车道线预测及预警方法,包括以下几个步骤:
步骤1:实时获取行车道路图像,并以道路图像的下半部分作为道路感兴趣区域ROI;
步骤2:图像预处理;
对道路感兴趣区域ROI依次进行灰度化处理、高斯滤波处理、边缘检测及二值化处理获得道路预处理图像;
步骤3:采用Hough变换对道路预处理图像进行车道线检测,获得当前帧图像的车道线的直线方程y=kx+b,设置预测次数T初始值为0;
利用Hough变换对道路预处理图像进行车道线检测,获得车道线方程y=kx+b,其中,x和y表示车道线上任意点的横坐标和纵坐标,图像的底边为x轴,图像底边的中垂线为y轴,垂直向上为y轴正方向,以x轴和y轴的交点作为坐标原点,k和b由车道线的极坐标参数极径ρ和极角转换获得;
步骤4:若当前帧为第一帧图像,则将车道线检测值存储到存储器中;否则,将当前帧图像的车道线检测值与预测器对上一帧图像输出的车道线参数预测值做差值,将获得的差值c与设定的阈值范围[m,n]进行比较,如果差值满足m≤c≤n,则将当前帧图像的车道线检测值代替存储器中的车道线参数,否则以预测器输出的车道线参数预测值代替存储器中的车道线参数;
步骤5:判断预测次数T是否小于设定阈值T0,若小于,则将存储器中的车道线参数输入Kalman预测器建立车道线感兴趣区域,预测次数T加1,并进入步骤6;否则,进入步骤7;
步骤6:从车道线感兴趣区域中任意提取n个数据点,采用最小二乘法进行拟合,获得当前帧图像的车道线参数预测值;
步骤7:利用前面步骤中获取的车道线参数、车道线位置和道路图像大小,对车辆行车路线进行偏离报警;
计算车辆与所在车道左右车道线之间的横向距离,如果任一横向距离小于预先设定的安全距离阈值,则判定车辆发生了车道偏离,否则,车辆未发生车道偏离,返回步骤1。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学,未经湖南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410260194.9/2.html,转载请声明来源钻瓜专利网。