[发明专利]一种基于情感数据场的连续语音情感预测方法有效

专利信息
申请号: 201410283309.6 申请日: 2014-06-23
公开(公告)号: CN104050963B 公开(公告)日: 2017-02-15
发明(设计)人: 查诚;黄程韦;赵力 申请(专利权)人: 东南大学
主分类号: G10L15/02 分类号: G10L15/02;G10L25/63
代理公司: 南京瑞弘专利商标事务所(普通合伙)32249 代理人: 杨晓玲
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 情感 数据 连续 语音 预测 方法
【说明书】:

技术领域

发明涉及一种语音情感预测方法,特别涉及一种对情感变化连续语音的基于情感数据场的情感预测算法。

背景技术

语音情感识别是人机智能化交互的一个重要研究领域,已有许多研究机构致力于该领域的研究。然而目前语音情感识别处理的对象往往局限于语料库中已分割好的短句,例如丹麦情感语音数据库(DES)、柏林情感语音数据库等,并且对语料库的语音情感识别已经能够获得比较高的识别率。但是在现实生活中,人们的情感表达和状态是一个连续变化的过程。实用语音情感识别系统要求处理的对象应该是未分割成短句的实时采集的连续情感语音。例如在电话服务中心,实用语音情感识别系统要能够预测和识别服务人员的情绪变化,预防对客户的不友好态度;航天、航空等特殊领域需要实时识别操作人员情感状态的变化,避免不必要的事故发生等。目前传统的语音情感识别方法都是孤立地考虑统计特征的情感特征向量,存在情感跟踪延迟或者不能及时识别情感的变化的问题,故无法实现对连续语音的情感预测。

发明内容

要解决的技术问题:针对现有技术的不足,本发明提出一种基于情感数据场的连续语音情感预测算法,解决现有技术的语音情感识别方法对连续语音的情感预测存跟踪延迟,无法实现对连续语音进行情感预测。

技术方案:为解决上述技术问题,本发明采用以下技术方案:

一种基于情感数据场的连续语音情感预测算法,获取训练样本的语音情感特征向量,利用语音情感特征向量作为数据构成情感数据场以形成语音情感特征空间,情感数据场中的势函数建立起不同语音情感特征向量之间的联系;在进行情感预测时,等间隔的对测试样本采集语音情感特征向量,判断语音情感是否发生变化,若未发生变化则返回重新获取下一时刻的语音情感特征向量并判断,若语音情感发生变化则等间隔的选取语音情感特征向量,利用TSP蚁群算法中的多个蚂蚁分别一一对应模拟选取出来的多个语音情感特征向量,利用TSP蚁群算法中的多个城市分别一一对应模拟多个语音情感的类型,在情感数据场中计算每种语音情感的类型在选取出来的多个情感特征向量处产生的势值大小,选择势值中最大的一个所对应的语音情感的类型即为预测语音情感变化后的情感类型。

具体的,在本发明中,包括顺序执行的以下步骤:

(1)、建立情感数据场

首先求取训练样本中类属于各种情感类别的语音情感特征向量,将这些语音情感特征向量进行特征规范化后作为数据点构成情感数据场,其中类属于不同情感类别的数据点分布在情感数据场中不同的区域,然后建立情感数据场中的势函数,则情感数据场中任一语音情感特征向量x的位势即势函数值如下

V(x)=ΣxiDf(x,xi),]]>

其中:

D为与语音情感特征向量x类属于同一类情感的训练样本的集合;

f(x,xi)=exp{-(x-xi)TΣ-1(x-xi)}

其中,

Σ表示训练样本的语音情感特征向量组成的协方差矩阵,Σ=E[x-E(x)][x-E(x)T];

T表示转置矩阵;

x表示待求位势的样本的语音情感特征向量;

xi表示训练样本i的语音情感特征向量;

(2)、利用情感数据场对情感变化的语音进行预测和识别

步骤2-1、进行预测和识别时,依据已建立的情感数据场判别当前时刻的语音情感类型,将判断结果作为基本情感,基本情感的中心为ωi

步骤2-2、确定对测试样本的分析间隔,然后在预测和识别情感的时刻开始之前的1s或者2s内等间隔采集语音情感特征向量;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410283309.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top