[发明专利]群体脑网络的建模方法及其拓扑属性分析方法在审
申请号: | 201410317904.7 | 申请日: | 2014-07-04 |
公开(公告)号: | CN104050394A | 公开(公告)日: | 2014-09-17 |
发明(设计)人: | 朱朝喆;段炼;戴瑞娜 | 申请(专利权)人: | 北京师范大学 |
主分类号: | G06F19/12 | 分类号: | G06F19/12;G06F17/30;G06N3/02 |
代理公司: | 北京汲智翼成知识产权代理事务所(普通合伙) 11381 | 代理人: | 陈曦;董烨飞 |
地址: | 100875 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 群体 网络 建模 方法 及其 拓扑 属性 分析 | ||
技术领域
本发明涉及一种群体脑网络建模方法,尤其涉及一种基于图论的群体脑网络建模方法,同时涉及一种基于上述群体脑网络建模方法实现的群体脑网络拓扑属性分析方法。
背景技术
人类大多以群体作为基本生活方式。小至家庭、单位,大至民族、国家,人们总是以各种方式组织在一起,产生了形形色色的群体。群体社会行为通常远较个体社会行为复杂和丰富,并常常体现出一些独特的群体心理现象,例如群体凝聚力、群体智慧、群体极化等等。
近年来,多人交互同步记录(hyper scanning)技术的出现使同时观测交互过程中的群体脑活动变为现实,为获取群体心理行为的神经活动数据提供了全新的脑成像技术。在获得群体脑成像数据之后,如果能够实现群体脑成像数据的建模,那么就可以对群体神经活动进行解码,从而利用群体神经活动模式预测群体行为。例如,通过对团队神经活动模式的建模,解码出不同团队凝聚力程度的神经活动模式,从而预测某一团队是否具有高凝聚力。但是,目前群体脑成像数据的建模尚为空白。
现有技术中的个体脑区间建模及分析方法,具体可参见公开号为CN1626031A的中国发明申请中提供的“基于图论的脑区间功能连接的检测方法”。这种检测方法基于磁共振成像技术,在图论的框架下,通过对人脑不同脑区之间的关系进行数学建模,来检测脑区间的功能连接强度,进而评价某一脑区在其所属的功能网络中所起的作用。这种脑区间功能连接的检测方法可以用于临床医学中脑疾病的诊断,病人用药前后脑区连接差异的评估,脑区功能网络的研究,对脑区发育变化的认识以及对人脑工作机理的理解等。
群体脑网络与个体脑网络存在根本不同。从信息处理的角度来看,群体中的每个个体其交互行为必须依赖群体中其他成员的信息。在交互过程中,每个个体不断地接收群体提供的信息输入并做出处理,再将反应结果信息输出到群体环境中为他人所获取。群体社会交互即是所有参与交互的个体同时地不断地输入、处理、输出交互信息的过程。换言之,群体社会交互过程可以看作是每个个体的信息不断地在其他群体成员脑中表达的连续过程。因此,群体交互行为与普通的个体认知行为的一个根本区别在于,群体交互行为的结果取决于各个群体成员脑中信息表达之间的关系,而不是仅由各个群体成员脑中信息表达本身所决定。这种群体成员脑间信息表达的关系称为“脑间连接”。
上述群体成员间的脑间连接可以使用网络模型来描述。将群体中每名成员的大脑看作网络中的节点,将群体成员间的脑间连接作为网络的边。其中,某些节点间存在直接相连的边,则这些成员的大脑彼此间可以通过脑间连接进行直接的信息映射。某些节点间不存在直接相连的边,而需要借助经过其他节点的通路连通,则这些成员大脑彼此之间的信息需要通过中间媒介进行传输。整个群体的脑间连接网络(即群体脑网络)的拓扑属性可能是影响群体行为的关键所在。而群体脑网络的动态变化则会反映在群体交互的动态变化上。某一个体的神经活动模式可以通过群体脑网络进行广泛的传播,从而导致行为或心理的传播。当群体脑网络具有足够高的信息传递效率时,群体成员间就可以产生彼此间神经活动信息的快速映射,从而使群体体现出某些行为表现(如群体成员行为保持高度一致等)。
因此,群体脑网络和个体脑网络具有以下差别:第一,这两类脑网络表征的心理行为过程不同:个体脑网络表征的是个体心理过程,如个体的感知觉、注意状态、情绪状态等,群体脑网络表征的是群体成员之间进行交互的过程。第二,网络建模方法及复杂性不同:个体脑网络中的节点是个体脑中的不同脑区,边是脑区之间的结构或功能连接。群体脑网络中的节点是每个个体的脑,边是个体脑之间的脑间连接,因此,群体脑网络建模具有个体脑网络建模所不具备的复杂性。第三,在群体脑网络中,每个个体脑可以作为一个整体当做节点,产生较为简单的平面网络;每个个体脑也可以分为多个脑区提供多个节点,相当于将网络的节点从全部个体扩展到全部个体的全部脑区,此时产生的群体脑网络将体现出立体的层次结构,每一层包含所有个体相同脑区的节点;层内的连接表示不同个体相同脑区之间的神经活动同步性,层间的连接表示不同脑区之间的神经活动同步性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京师范大学,未经北京师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410317904.7/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用