[发明专利]基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法有效
申请号: | 201410331530.4 | 申请日: | 2014-07-14 |
公开(公告)号: | CN104156943B | 公开(公告)日: | 2017-08-25 |
发明(设计)人: | 公茂果;马文萍;姜琼芝;焦李成;马晶晶;李豪;刘嘉;王桥;薛长琪 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T7/10 | 分类号: | G06T7/10 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙)11350 | 代理人: | 汤东凤 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 支配 邻域 免疫 算法 多目标 模糊 图像 变化 检测 方法 | ||
技术领域
本发明属于图像处理技术领域,涉及多目标进化算法在图像聚类分割上的应用,可用于图像变化检测、图像分割、图像分类、模式识别、目标跟踪等技术领域中。
背景技术
遥感图像变化检测是通过对同一地区不同时期的两幅或多幅遥感图像的比较分析,以及图像之间的差异得到所需的地物变化信息。目前SAR图像变化检测算法的研究方法大体分为两种:第一是分类后比较法,第二是差异图分类法。差异图分类法是目前公认的较为有效的方法,即先构造一幅差异图像(DI),然后对这幅差异图像进行处理。在第二步中差异图的分析方法主要是对差异图中变化和非变化区域的准确分类,这种二元分类的变化检测问题,往往可将其划分为图像分割方向的一类重要应用。
在众多的分割算法中,基于聚类分析的图像分割算法是图像分割领域中一类极其重要和应用相当广泛的算法。聚类是对目标或模式以一定的要求和规律进行区分和分类的过程。模糊C-均值聚类(Fuzzy C-Means)算法作为一种常见的基于目标函数最小化的聚类算法。目前已被广泛应用于图像的自动分割。但是经典的FCM本身也存在一定的缺陷:
一方面,传统FCM是一种基于图像灰度的聚类算法,聚类过程中各个像素是相互独立的,并未考虑到图像中各个像素点的灰度特征与其邻域像素的关系,但一般情况下,图像在成像过程中不可避免的受到不同噪声的干扰,特别是SAR图像,其固有乘性斑点噪声,因而分割模型是不完整的,造成FCM算法只适用于分割噪声含量很低的图像。为了克服这一缺点,在聚类过程中结合空间邻域信息是比较常用的方法。常见的有FCM_S,FCM_S1,FCM_S2,FLICM等。上述算法是在FCM的基础上加上模糊的局部空间信息和灰度信息,可以克服FCM本身所存在的问题,同时可以提高聚类的性能,从而达到去除噪声和细节保持的平衡。但是FCM_S这两种算法在引入邻域空间信息时都添加了一个参数来平衡噪声和图像细节之间的权重大小,而参数的选择往往是不确定的,需要通过反复地测试来获得。若参数选择不当,则会影响算法的分割效果。模糊局部信息C均值算法(FLICM)算法期望构造出一个不含参数且能平衡噪声和图像细节的因子,避免了参数选择困难的问题,但是在实际计算中,并不能有效的收敛,且根据拉格朗日乘数法求目标函数的极小值得不到给出的聚类中心和隶属度矩阵结果。
另一方面,传统聚类算法采用随机选取的方法聚类中心进行初始化,就很有可能对聚类结果的准确性造成较大的影响。易使得迭代过程陷入局部最优解,因此把进化计算引入模糊聚类中,可以解决传统聚类方法对初始聚类中心敏感的缺点,并且提高其收敛到全局最优解的概率,以期达到全局寻优、快速收敛的目的。非支配邻域免疫算法NNIA(NNIA,Nondominated Neighbor Immune Algorithm)是通过在人工免疫系统中引入一种新的非支配邻域选择策略提出的一种多目标优化方法。将所有的抗体分为非支配抗体和支配抗体两类,并模拟了免疫响应中多样性抗体共生、少数抗体激活的现象,通过一种基于拥挤距离的个体选择方法,只选择少数拥挤距离较大的非支配个体作为活性抗体,根据活性抗体的拥挤程度进行比例克隆复制,对克隆后的抗体群采用了有别于GA的重组操作和变异操作,以此加强对当前Pareto前沿面中较稀疏区域的搜索。因此能够获得分布均匀的Pareto最优解,与其他具有代表性的进化多目标优化算法NSGA-II、SPEGA2及PESA-II相比,NNIA运算复杂度低、更加有效可行。
由于上述传统聚类算法及其改进算法存在的缺点以及传统聚类方法对初始聚类中心敏感的缺点,限制了聚类算法在图像分割方面的应用,而FLICM算法通过平衡噪声和图像细节的因子,避免了参数选择困难的问题出发点可供参考,因此利用数学方法对图像噪声和细节进行多目标优化建模进行图像聚类分割值得人们加以思考和关注。
发明内容
本发明的目的在于克服上述已有聚类技术在图像分割中的不足,提出一种基于非支配邻域免疫算法的多目标聚类图像变化检测分析方法,同时建立两个相应的目标函数,以实现在图像分割中既能很好的抑制斑点噪声,又不会造成细节的丢失。用随机产生的初始抗体种群代替初始的聚类中心,从而降低传统聚类分割方法对初始聚类中心的敏感度,最终获得一组非劣解,结果图像或保证细节或去除噪声,由用户来自主选择是保留更多细节还是去除噪声,或者二者并重。
本发明的技术方案是将多目标的思想引入模糊聚类算法中以达到在应用聚类算法对图像进行分割时能既保证有效地去除噪声同时又不会造成细节的丢失,采用基于非支配邻域免疫算法对多目标进行优化,得到新的图像聚类分割方法。其具体实现过程如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410331530.4/2.html,转载请声明来源钻瓜专利网。