[发明专利]一种RSA解密的方法及装置有效

专利信息
申请号: 201410350403.9 申请日: 2014-07-22
公开(公告)号: CN104104504B 公开(公告)日: 2017-05-10
发明(设计)人: 周兴建;王俊 申请(专利权)人: 大唐微电子技术有限公司
主分类号: H04L9/28 分类号: H04L9/28
代理公司: 北京安信方达知识产权代理有限公司11262 代理人: 李红爽,栗若木
地址: 100094*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 rsa 解密 方法 装置
【说明书】:

技术领域

发明涉及通信领域,特别是涉及一种RSA解密的方法及装置。

背景技术

RSA即RSA算法。RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。

RSA的算法涉及三个参数,N、e、d。

其中,N是两个大质数p、q的积,N的二进制表示所占用的位数,就是所谓的密钥长度。密钥长度为32的倍数,现在常用的是1024、1480、2048等,一般要求N的最高bit为1,此时习惯称相应的RSA为1024位的RSA、1480位的RSA、2048位的RSA等。

e和d是一对相关的值,e可以任意取,但要求e与(p-1)*(q-1)互质;再选择d,要求(e*d)mod((p-1)*(q-1))=1。

(N,e),(N,d)就是密钥对。其中(N,e)为公钥,(N,d)为私钥。e的取值一般不超4个字节,经常用的为3(即0x00000003),17(即0x00000011),257(即0x00000101),65537(即0x00010001)。

RSA加解密的算法完全相同,设m为明文,c为密文,则:m=cdmodN;c=memodN(公钥加密体制中,一般用公钥加密,私钥解密)。

e和d可以互换使用,即:

c=mdmodN;m=cemod N。

蒙哥马利(Montgomery)定理:N和R都是整数,满足gcd(N,R)=1,即N、R的最大公约数为1,N、R互质。令N'=-N-1modR,T是满足0≤T<NR的正整数,若U=TN'modR,则(T+UN)/R是整数,且(T+UN)/R≡TR-1(modN)。

根据蒙哥马利定理,b=232,如果所有整数都表示成b进制,并且R=bn,则满足gcd(N,R)=1。若T=A*B,那么TR-1(modN)就可以根据定理计算(T+UN)/R,而公式中的除以R,可以直接利用移位运算即可,对R取模可以直接取低位,避免了除法运算,提高了速度。通常即上述的模乘为蒙哥马利模乘,符号为MM(A,B,N)=A*B*R-1modN。根据定理0≤(T+UN)/R<2R。

RSA算法就是计算mdmodN,其步骤一般为:

步骤101、计算Montgomery常数平方C=R2modN,其中R=2k,k=(log2N)+1,即k是模数N的位数,一般为32的倍数。

步骤102、调用Montgomery模乘算子,将乘数从普通域转换到Montgomery域,即m1=MM(m,C,N)=(m*R)modN,

步骤103、通过Montgomery模乘算子计算MM(m1,m1,N)=(m2*R)modN,连续调用Montgomery模乘算子可得到中间结果t=(md*R)modN。

步骤104、取常数1,调用Montgomery模乘算子S=MM(t,1,N)=mdmodN,若S≥N,S=S-N,返回S。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大唐微电子技术有限公司,未经大唐微电子技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410350403.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top