[发明专利]一种微型无人机室内定位方法有效
申请号: | 201410350665.5 | 申请日: | 2014-07-22 |
公开(公告)号: | CN104154910B | 公开(公告)日: | 2017-01-04 |
发明(设计)人: | 程农;李清;唐良文;吴沁凡 | 申请(专利权)人: | 清华大学 |
主分类号: | G01C21/00 | 分类号: | G01C21/00;G01C21/16 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙)11201 | 代理人: | 廖元秋 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 微型 无人机 室内 定位 方法 | ||
技术领域
本发明属于微型无人机导航定位技术领域,特别涉及一种室内无GPS情况下MEMS惯性传感器辅助的RGB-D传感器的微型无人机定位方法及系统。
背景技术
近年来,微型无人机领域快速发展,尤其无人机室内自主飞行领域快速前进,出现了许多突破性的进展,将使微小型自主无人机在工业生产、环境探测、紧急救援甚至日常生活中产生重要的作用。虽然室内自主微小无人机具有巨大的潜力,但其发展尚面临着巨大挑战,其中一个就是在未知室内环境的准确和高精度定位技术。由于受到自身尺寸和载荷的严重限制,无人机使用的惯性传感器只能是低性能低精度的MEMS(微机电系统)类型的导航传感器。该类惯性传感器仅能提供一个精度较低的姿态信息,而不能提供一个可用的位置和速度信息。而当无人机在室内作业时通常是没有GPS(全球定位系统)信号的,故此时必须通过其他传感器来获取一个有效的高精度的定位信息来现实无人机的室内自主飞行并执行任务。
目前,未知室内环境定位方法通常采用视觉传感器来实现,常见的视觉设备包括激光传感器、单目相机、双目相机和RGB-D(彩色和深度)相机等。激光传感器使用ICP(Iterative Closest Point,最近邻点迭代算法)对扫描点阵进行配准和定位,该算法具有计算实时性好和输出定位信息稳定,有许多国内外的实验室已经利用该方法实现了某些特定室内环境中的定位和无人机自主飞行。该方法的主要缺点是只能得到的二维的扫描信息,适用于多垂直面的环境,而在复杂的三维环境中显得感知能力不够。对于单目相机来说,一般使用SFM(Structure From Motion,运动结构估计)方法来计算基本矩阵,从而得到相机的运动方向,但该方法无法恢复出运动距离,使得该方法不能用于未知的复杂室内环境。与单目相机相比,双目视觉系统能够恢复出图中许多点的深度,将图片中的像素点映射到三维空间中,从而获得三维的深度信息,再利用这些三维深度信息的关联关系解算出相机系统的运动方向和距离。该方法的一个缺点是对于相机的标定很严格,价格昂贵。而RGB-D相机得到环境和双目相机类似,能直接获取空间点到相机的三维位置信息和普通的二维图像信息,通过和双目相机类似的方法,同样可获取相机的运动方向和距离这6个自由度的信息。相比双目相机,RGB-D相机优势是价格低廉,但是其数据质量比较差,噪声大,同时存在固有的数据延迟等问题。
基于RGB-D相机的室内定位算法通常是提取RGB图像的特征点,并将相邻两帧的RGB图像的特征点进行匹配,再利用匹配的特征点所对应的景深信息来估计这两帧之间相机的6维运动情况,即姿态变化和平移运动。这个过程被称为视觉位置估计(Visual Odometry)或简称VO。这个方法一般存在如下三个问题:一是图像特征提取算法耗时巨大,导致该算法不能实时运行;二是图像特征提取由于环境而集中在某个局部,导致定位算法性能下降,甚至估计错误;三是利用关联的三维点对直接估计出六维的运动,容易受到噪声和错误数据的影响,而导致姿态变化和平移运动相互影响,进而产生更大的估计误差。
发明内容
本发明的目的是针对已有技术存在的问题,提供一种微型无人机室内定位方法,以实现微小无人机的实时、鲁棒、高精度的室内位置估计。
为实现上述目的,本发明提供了一种微型无人机室内定位方法,其特征在于,该无人机载有MEMS惯性器件及RGB-D相机,其中MEMS惯性器件以采样间隔Ts输出无人机的当前的三轴角速度三轴加速度和无人机所在位置的地球磁场的三轴磁分量上角标b表示该数据是测量值在机体坐标系b中的表示结果,RGB-D相机以30Hz输出RGB图像和深度图像,该方法包括以下步骤:
1)实时读取MEMS惯性器件的无人机的当前的三轴角速度三轴加速度和无人机所在位置的地球磁场的三轴磁分量解算无人机的当前采样时刻n的姿态角(θn,γn,ψn),其中θ、γ、ψ分别表示俯仰角、横滚角和偏航角;
2)实时读取RGB-D相机的当前帧m的RGB图像和深度图像,取此时刻步骤1)中无人机姿态角(θn,γn,ψn)作为当前帧RGB图像的无人机姿态角设当前帧m和上一帧m-1的无人机姿态角对应的姿态矩阵分别为Rm和Rm-1,则当前帧mRGB图像的无人机姿态和上一帧m-1RGB图像的无人机姿态的姿态差对应的姿态矩阵δRm;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410350665.5/2.html,转载请声明来源钻瓜专利网。