[发明专利]一种基于子兴趣划分的标注用户模型建构方法有效

专利信息
申请号: 201410379778.8 申请日: 2014-08-04
公开(公告)号: CN104199836B 公开(公告)日: 2017-07-14
发明(设计)人: 魏建良;琚春华;肖亮;刘东升 申请(专利权)人: 浙江工商大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 浙江杭州金通专利事务所有限公司33100 代理人: 刘晓春
地址: 310018 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 兴趣 划分 标注 用户 模型 建构 方法
【说明书】:

技术领域

发明涉及社会化标注技术,具体涉及一种基于子兴趣划分的标注用户模型建构方法。

背景技术

电子商务作为一种新兴的商务模式已经越来越受到人们的普遍认可并蓬勃发展。个性化推荐技术作为用户在海量商务信息中获取偏好商品信息的重要手段,近年来受到了广泛的关注。几乎所有的大型电子商务系统如Amazon、淘宝等均不同程度的使用了各种推荐系统。随着各种Web2.0应用的深入发展,普通用户越来越成为信息内容的重要生产者,Delicious、Flickr、YouTube等Web2.0网站不断涌现,社会化标注(Social Tagging)也成为了电子商务个性化推荐研究一个新的着手点。

社会化标注系统中的用户模型是各类推荐系统进行个性化推荐的重要依据之一,因此用户模型的建立对于推荐系统能否进行准确及时有效的推荐至关重要。当前,基于社会化标注的用户建模的研究仍处在一个兴起阶段。在已有的研究中,多数的研究是将用户兴趣作为同一维度加以处理,而事实上,用户往往有着多个不同的兴趣点。如某一用户不仅对计算机编程充满兴趣,同时也关注旅游摄影方面的信息,如果将该用户的兴趣标签置于同一维度模型中,将很有可能导致标签间的语义混乱,从而降低个性化推荐的效果。现有的方法有:一是基于矩阵的处理建立用户模型。矩阵的表示方法在社会网络的文献中非常流行,具体的方法包括:通过标签-资源矩阵和LSA方法来进行的,利用HOSVD算法将用户、标签、资源吸收到同一框架中进行分析的,以及通过矩阵扩展的方法等。二是基于聚类分析建立用户模型。具体的方法包括通过紧密度(affinity)计算标签之间的相关性并将相关标签进行聚类,也有研究通过计算目标用户和其他用户的余弦相似性并结合朴素贝叶斯法,得出资源对用户的推荐度。还有研究则是通过资源聚类展开,通过对用户所标注资源进行内容聚类,实现个性化推荐。三是基于网络来建立用户模型,包括借助网络二分图、无向权图实等方法,但是这些方法都没有考虑用户兴趣的多面性,尤其是在向量空间模型中,由于没有对用户兴趣进行区分而将标签在同一向量中混合处理,造成了标签间的语义混乱问题,在实际应用中,往往导致标注网站将不甚相关的资源推荐给用户,影响了用户满意度。

发明内容

本发明所要解决的技术问题是提供一种基于子兴趣划分的标注用户模型建构方法,能够为现有的推荐系统提供更为细粒度的用户模型,提高推荐系统的准确性和推荐效率。

本发明为了解决上述技术问题所采用的技术方案为:

一种基于子兴趣划分的标注用户模型建构方法,包括以下步骤:

1)从标签网站提供的API端口爬取网站用户标注数据,对用户添加过标签的资源信息(URLs)进行统计,建立标注资源信息数据库;

其中,标签网站是指允许普通用户为资源添加标签的网站;

2)对用户所标注的每个资源建立向量空间模型;

3)对步骤2)中所建立的向量空间模型进行资源聚类;

4)根据步骤3)得到的聚类资源结果进行用户子兴趣划分;

5)基于步骤4)划分的用户子兴趣构建用户模型;

6)将用户模型嵌入标签网站后台,根据用户模型与资源模型的余弦相似度进行资源推送。

在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术方案:

所述步骤2)具体包括以下步骤:

2.1):选取标签网站中的一个目标用户,从步骤1)建立的标注资源信息数据库中获取其标注的所有资源信息,建立资源集合SetR

2.2):统计资源集合SetR中每一资源r中所有标签的出现频率;

2.3):应用TF-IDF算法,计算资源r中所有标签的权值w并确定主流标签PopT

TF-IDF是一种权值计算方法,根据目标的标签频率与反向频率来确定其权值,这是一种全局方法,需要具备标注系统内所有资源及其标签的信息。主流标签PopT是指每个资源中权值最高的若干个标签,是作为有限计算量下代表资源特征的一种处理方法。

2.4):构建资源r的向量空间模型r(tm,wm),其中,tm表示该模型中所包含的第m个标签,wm为对应的权重。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工商大学,未经浙江工商大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410379778.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top