[发明专利]基于稀疏表示和空谱拉普拉斯图的高光谱数据降维方法有效

专利信息
申请号: 201410542949.4 申请日: 2014-10-14
公开(公告)号: CN104318243B 公开(公告)日: 2017-09-26
发明(设计)人: 焦李成;陈璞花;杨淑媛;侯彪;王爽;马文萍;马晶晶;刘红英 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 陕西电子工业专利中心61205 代理人: 王品华,朱卫星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 稀疏 表示 拉普拉斯 光谱 数据 方法
【权利要求书】:

1.一种基于稀疏表示和空谱拉普拉斯图的高光谱数据降维方法,包括以下步骤:

(1)从一幅高光谱图像数据I中选择n个数据点作为高维的训练样本,高光谱数据维数为p,n的数值由高光谱图像数据的规模确定,取整体数目的10%以上;

(2)对所选高维训练样本进行空谱拉普拉斯图G的构造:

(2a)构造谱间图G1:

使用谱信息散度SID作为训练样本点间的距离度量,计算第i个训练样本与其它训练样本间的距离,i=1,…,n,并对这些距离值进行由小到大排序,选择距离最小的N个样本作为第i个训练样本点的N近邻,N的值根据具体的实验数据进行设置;

根据第i个训练样本点的N近邻确定第i个训练样本点与其它训练样本点的连接关系:若第j个训练样本点在第i个训练样本点的N近邻中,则将第j个训练样本点与第i个训练样本点连接,并计算该连接边的权值反之,第j个训练样本点与第i个训练样本点不连接,W′ij=0,其中x,y分别为第i个训练样本点与第j个训练样本点所对应的光谱向量,参数t根据实际数据调试确定;

(2b)构造空间图G2:

比较第i个训练样本点与其它训练样本点的二维坐标,i=1,…,n,确定其它训练样本点是否在第i个训练样本点的K邻域中,若第j个训练样本点在第i个训练样本点的K邻域内,将第i个训练样本点与第j个训练样本点进行连接,反之第i个训练样本点与第j个训练样本点不连接,邻域参数K=11,该参数表示以第i个训练样本点为中心的11*11的邻域区域;

确定连接边的权值:将11*11的邻域划分为内邻域和外邻域,内邻域为以第i个训练样本点为中心的5*5的区域,外邻域为除去内邻域的剩余邻域区域;如果第j个训练样本点在第i个训练样本点的内邻域中,则连接边的权值为W″ij=1,如果第j个训练样本点在第i个训练样本点的外邻域中,则连接边的权值W″ij=0.8;若第i个训练样本点与第j个训练样本点间不存在连接,则W″ij=0;

(2c)将谱间图G1和空间图G2进行合并操作,保留这两个图中的所有连接边,得到空谱拉普拉斯图G,得到空谱拉普拉斯图G的权值矩阵为W,W=W'+W”,计算拉普拉斯矩阵L,L=D-W,其中D为由W的行或列求和得到的向量作为对角线元素的对角矩阵;

(3)对拉普拉斯矩阵L和对角矩阵D进行广义特征值分解,取最小r个特征值对应的特征向量作为训练样本所对应的低维表示TR;

(4)构造高维空间与低维空间的对偶字典:将n个p维的训练样本作为高维字典HD,将n个训练样本对应的r维表示TR作为低维字典LD,这两个字典的原子间存在一一对应的关系;

(5)对剩余高光谱数据进行稀疏表示求解,得到剩余高光谱数据在高维字典HD上的稀疏表示系数:Θ=[θ1,...,θs,...,θm],θs为第s个数据点的稀疏表示系数,s=1,...,m,m为剩余高光谱数据的个数;

(6)将剩余高光谱数据的稀疏表示系数Θ与低维字典LD相乘,得到剩余高光谱数据的r维表示RR=LD*Θ;

(7)结合训练样本的r维表示TR,得到整个高光谱数据的r维表示IR=[TR;RR]。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410542949.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top