[发明专利]一种基于脉搏回归模型的心电信号数据修正方法及系统有效

专利信息
申请号: 201410556338.5 申请日: 2014-10-20
公开(公告)号: CN105590011B 公开(公告)日: 2019-04-30
发明(设计)人: 戴鹏;沈劲鹏 申请(专利权)人: 深圳市迈迪加科技发展有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/00
代理公司: 深圳市君胜知识产权代理事务所(普通合伙) 44268 代理人: 王永文;刘文求
地址: 518000 广东省深圳市南山*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 脉搏 回归 模型 电信号 数据 修正 方法 系统
【说明书】:

发明公开一种基于脉搏回归模型的心电信号数据修正方法及系统,其中,方法包括步骤:使用人工神经网络构造一回归模型,并利用采集到的脉搏信号数据以及心电信号数据对回归模型进行训练得到训练后的回归模型;将脉搏信号数据作为训练后的回归模型的网络输入,将输出作为估计的心电信号数据,然后根据采集的心电信号数据与估计的心电信号数据的数值差异对心电信号数据进行修正。本发明运算速度远高于多数现有方法。

技术领域

本发明涉及心电信号领域,尤其涉及一种基于脉搏回归模型的心电信号数据修正方法及系统。

背景技术

现有的心电信号(Electrocardiography,ECG)数据分析算法,主要包含两个步骤:首先,检测并定位原始信号中的基本波形,提取其特征信息;而后,使用机器学习算法对此特征进行分类/回归分析,预测其目标状态。

如图1所示,一个正常心动周期中的心电信号,可视作由P波、QRS波群、T波及U波4种基本波形组成。其特征提取过程,便是通过测定输入信号的这4种基本波形,计算所包含的预设指标信息。现有算法一般使用峰值检测、小波分析等对基本波形进行测定,而提取的特征则包括所有4种基本波形的时长与形态(幅度及变化率等)、ST段时长、PR间期时长、QT间期时长、以及RR间期时长等。原始心电信号的采集精度越高,则其波形检测、特征提取的效果也越好,从而可更为有效地提升后续机器学习算法的预测性能。

心电信号由实际生理活动所产生,且由于测量时人体运动等原因,所获取的数据往往会包含一定的偏差与畸变,从而影响算法预测效果。在实际应用中,一般会要求被测者在连续时间内处于静卧状态,以降低采集数据的失真程度,一方面严重限制了心电信号的运用环境,另一方面部分固有偏差并不能以此被有效消除。因此亟须设计具针对性的信号修正算法,以从软件层面消除采集失真所带来的不良影响。

现有心电信号数据修正算法,主要针对某一特定指标进行校正。常用方法包括基于中值滤波的基线漂移修正、基于最小二乘的基线修正、以及基于心率的间期修正等。但这些现有的心电信号数据修正方法,都存在缺点:

1、现有算法仅能针对单一种类的失真进行修正,而实际采集的心电信号往往包含多种畸变与偏差。若要完全消除其干扰,则必须针对每种信号失真都构造相应的处理算法。这一方面增加了算法设计难度,另一方面也严重降低了数据处理的速度,不利于心电信号的实际运用。

2、现有算法仅能对较为简单的信号指标(如基线漂移、间期时长等)失真进行修正,而对波形形态等复杂特征则无能为力。此类特征对某些特定疾病状态的检测至关重要,若无法对其失真进行修正,将很可能导致此类状态被漏检或产生误判,从而造成不良的影响。

3、现有算法往往基于先验知识进行修正,其模型设计也较为简单。例如在对基线漂移进行处理时,现有方法一般使用人工预设的滤波频域范围,而可能与被测者的实际状况不相符。其使用的修正技术,通常也仅是简单的中值滤波而已,难以有效处理复杂多变的现实心电信号数据,从而影响了算法性能。

因此,现有技术还有待于改进和发展。

发明内容

鉴于上述现有技术的不足,本发明的目的在于提供基于Memetic算法的心电信号特征选择方法及系统,旨在解决现有的特征提取和选择方法存在学习效果差、特征提取不完整、效率和准确率低的问题。

本发明的技术方案如下:

一种基于Memetic算法的心电信号特征选择方法,其中,包括步骤:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市迈迪加科技发展有限公司,未经深圳市迈迪加科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410556338.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top