[发明专利]植物扫描与重建方法有效
申请号: | 201410630906.1 | 申请日: | 2014-11-11 |
公开(公告)号: | CN104408765A | 公开(公告)日: | 2015-03-11 |
发明(设计)人: | 黄惠;尹康学 | 申请(专利权)人: | 中国科学院深圳先进技术研究院 |
主分类号: | G06T17/00 | 分类号: | G06T17/00 |
代理公司: | 北京三友知识产权代理有限公司 11127 | 代理人: | 王天尧 |
地址: | 518055 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 植物 扫描 重建 方法 | ||
1.一种植物扫描与重建方法,其特征在于,包括:
对植物进行整体扫描,获得植物的整体扫描数据;
对植物的每个叶子进行单独扫描,获得每个叶子的点云数据;
将每个叶子的点云数据重建为曲面模型,通过泊松重建算法得到茎杆的重建结果;
将重建后的所有叶子和茎杆与植物的整体扫描数据对齐;
将所有叶子对齐后的点云数据融合到一起,得到整棵植物模型;
其中,将每个叶子的点云数据重建为曲面模型,包括:
利用L1-中值算法提取叶子的骨架;
沿着骨架对叶子的点云做垂直切片;
根据点云切片的纵横比将切片分为叶片和叶柄两部分;
采用基于曲率的二次距离极小化方法,对每个切片拟合一个非统一有理B样条NURBS曲线,叶片拟合一个非闭合曲线,叶柄拟合闭合曲线;
优化求解所有NURBS控制点的最佳位置;
连接叶子的所有切片形状,得到叶子的形状。
2.如权利要求1所述的方法,其特征在于,采用手持式结构光3D扫描仪,对植物进行整体扫描,以及,对植物的每个叶子进行单独扫描。
3.如权利要求1所述的方法,其特征在于,优化求解所有NURBS控制点的最佳位置,包括:
通过BFGS算法极小化如下目标函数,得到NURBS控制点的最佳位置:
f(x)=Edata(x)+αEsmooth(x)+βEbound(x)+γEround(x);
其中,x为要求解的控制点位置;Edata为所有点云中的点到NURBS曲线最近距离的累加;Esmooth为不同NUBRS曲线上相同标识ID的控制点连成的曲线的不光滑度;Ebound为非闭合NURBS端点到叶片点云边界处的最近距离的累加,Eround为每个闭合NURBS曲线的周长面积比;α、β、γ为常数。
4.如权利要求1所述的方法,其特征在于,将重建后的所有叶子和茎杆与植物的整体扫描数据对齐,包括:
为每个叶子或茎秆模型定义多对到植物点云的对应点,求出所述多对对应点定义的刚性变换,并以求出的刚性变换对每个叶片或茎秆进行变换;
利用骨架驱动叶片和茎秆变形,进行非刚性配准;
将控制对象由骨架变为用WLOP算法均匀采样的控制点,再次进行非刚性配准。
5.如权利要求4所述的方法,其特征在于,利用骨架驱动叶片和茎秆变形,进行非刚性配准,包括:优化求解骨架点旋转和平移变换。
6.如权利要求5所述的方法,其特征在于,优化求解骨架点旋转和平移变换,包括:
采用BFGS算法极小化目标函数,以求得定义在骨架上的最佳变换,并将所述最佳变换应用到叶片和茎秆模型上,所述目标函数定义为变形后叶片到点云之间的距离+定义在骨架上的一个的拉普拉斯光滑算子。
7.如权利要求6所述的方法,其特征在于,将控制对象由骨架变为用WLOP算法均匀采样的控制点,再次进行非刚性配准,包括:
将拉普拉斯光滑算子由骨架移到控制点相互连接成的网格上。
8.如权利要求1所述的方法,其特征在于,将所有叶子对齐后的点云数据融合到一起,包括:
通过检测三角形相交求出两片相交叶子的相交轮廓,然后搜索出使轮廓长度下降最快的位移方向,并通过移动轮廓附近的控制点来驱动叶子变形。
9.如权利要求1所述的方法,其特征在于,将所有叶子对齐后的点云数据融合到一起,包括:
如果植物有茎,将叶子骨架末端变形到与叶子骨架末端距离最近的茎上的点,并利用骨架的变形驱动叶子的变形来达到茎叶相连;若没有茎,自动检测叶柄的末端距其它叶柄的距离,若距离小于阈值,则利用骨架的变形驱动叶子的变形来达到叶子相连。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410630906.1/1.html,转载请声明来源钻瓜专利网。