[发明专利]基于多细胞块状态融合的对象跟踪方法有效
申请号: | 201410633195.3 | 申请日: | 2014-11-11 |
公开(公告)号: | CN104392437A | 公开(公告)日: | 2015-03-04 |
发明(设计)人: | 权伟;陈锦雄;张卫华;江永全;何武 | 申请(专利权)人: | 西南交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/20 |
代理公司: | 成都宏顺专利代理事务所(普通合伙) 51227 | 代理人: | 李玉兴 |
地址: | 610031 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 细胞 状态 融合 对象 跟踪 方法 | ||
技术领域
本发明属于计算机视觉对象跟踪技术领域,特别涉及计算机图形图像处理技术领域。
背景技术
视觉对象跟踪是许多计算机视觉应用的基本和关键问题,如视频分析,智能监控,人机交互,行为识别等,尽管研究人员对此做出了大量的工作,但要在复杂的环境中实现实时稳定的对象跟踪仍然是极具挑战性的任务。
目前依赖检测或者学习的对象跟踪方法(如TLD,Tracking-Learning-Detection)受到越来越广泛的关注。这些方法通过学习某种分类器,如支持向量机、自举、随机森林,或者随机蕨等来发掘未知的数据和信息,进而增强其对目标及其场景变化的适应能力。在基础(短时)跟踪(如KLT、均值漂移、粒子滤波等)失败时,这些分类器则被用作检测器进行目标检测,以达到恢复跟踪的目的。为了保证分类器学习的准确性,同时又能尽可能的适应目标的变化,Babenko等提出了袋学习的思想和OMB方法(Online-MILBoost),Kalal等提出了P-N(Positive-Negative)正负样例学习的方法。然而,这些方法仍然难以处理非刚性运动变化以及遮挡等问题。对此,霍夫森林提供了一种可能的解决方法。霍夫森林是一种融合霍夫变换的随机森林,它由多个决策树组成,每棵树将图像或者视频中的局部表观映射到它的叶节点中,而每个叶节点则包含在霍夫空间中的概率投票。由此,对象的定位或者检测被看作是寻求在霍夫图像中的概率极大值点。然而这样的检测过程十分耗时,因此基于霍夫森林的对象跟踪方法在实时性上远不及基于随机蕨的方法。此外,基于稀疏表示和学习的对象跟踪方法,由于其较稳定的跟踪性能受到越来越多的关注和研究,然而这些方法十分依赖样例模板,同样存在不小的失败风险,且计算结构复杂而难以满足实际实时性的要求。
一般情况下,场景越复杂,跟踪或者检测就变得越困难,由于计算资源的局限和效率的要求,对象表观模型不能过于复杂。实际上,除了目标本身以外,背景信息也是十分有用且重要的信息。Yang等采用图像分割融合方法,通过时空分析发掘辅助对象作为跟踪协助,其对应实现的CAT跟踪系统表现出较稳定的跟踪结果。然而该辅助对象的获取基于一定的运动假设,因而难以适应更复杂的跟踪环境,且计算效率有待进一步的提高。Grabner等提出通过获取目标周围有价值的特征点,借此预测目标的位置,增强了跟踪的稳定性,然而检测和匹配所有这些局部特征点的方法在计算上十分耗时。Thang等通过将PNT作为基础跟踪和同时增加对误匹配项的跟踪来改进Grabner等的算法,能够在一定程度上区分与目标相似的对象,从而表现出更好的跟踪性能。Fan等提出学习具有较强区别性的关注区域用以辅助跟踪,然而在场景出现剧烈运动时,受这些局部区域的限制,其计算效率依然不高。Godec等通过对场景进行聚类学习,将背景分类为多个虚拟的类型,取得了较为满意的跟踪效果,但是该方法假设背景只是逐步而细微的改变,这在很多跟踪场合并不成立,因此其应用有限。
因此,本发明提出一种基于多细胞块状态融合的对象跟踪方法。该方法根据目标对象设置多个细胞块,每个细胞块具有其独立的运动状态,所有细胞块的一种状态构成一个配置,即通过配置将这些细胞块的状态信息进行融合,而一个配置对应了一种可能的目标状态。该方法通过产生多个配置,并计算其中最优的配置(置信度最高)进而估计得到目标状态,从而实现目标定位。由于目标状态估计不依赖其整体表观,构成目标的各个细胞块独立运动,且配置的置信度计算简单、快速,因此本发明方法可实现实时稳定的对象跟踪,能够处理目标旋转、扭曲、缩放等非刚性运动变化以及遮挡等问题。此外,本发明方法不仅可以用于单目标跟踪,通过在配置中包含多个目标的细胞块,还可以扩展用于多目标的跟踪。
发明内容
本发明的目的是提供一种基于多细胞块状态融合的对象跟踪方法,它能有效地实现实时稳定的对象跟踪,解决对象旋转、扭曲、缩放等非刚性运动变化以及遮挡下的跟踪问题。
本发明的目的通过以下技术方案来实现:该技术方案包括如下步骤:
(1)目标选取
从初始图像中选择并确定要跟踪的目标对象。目标选取过程可以通过运动目标检测方法自动提取,也可以通过人机交互方法手动指定。
(2)设置目标细胞块
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410633195.3/2.html,转载请声明来源钻瓜专利网。