[发明专利]大范围优先的跨摄像机视觉目标再识别方法有效

专利信息
申请号: 201480000159.1 申请日: 2014-04-30
公开(公告)号: CN104094279B 公开(公告)日: 2017-05-10
发明(设计)人: 黄凯奇;曹黎俊;陈威华 申请(专利权)人: 中国科学院自动化研究所
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 北京慧诚智道知识产权代理事务所(特殊普通合伙)11539 代理人: 李楠
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 范围 优先 摄像机 视觉 目标 识别 方法
【说明书】:

技术领域

发明涉及视频监控与模式识别领域,尤其涉及一种大范围优先的跨摄像机视觉目标再识别方法。

背景技术

随着社会现代化建设的快速发展,人们对社会安全的关注也越来越高,特别是对于一些公共场所,如学校,医院和政府机关等的监控。如今数以千计的摄像机被用于公共场所的日常监控,这些摄像机每天产生着大量的视频数据。但是,作为传统的视频监控系统由于需要人为的监视,因而存在着很多难以克服的问题。

首先,现有的视频监控都需要有人在视频前实时监视,没法实现自动监控报警,很容易长时间监视而造成人员的过度疲劳。同时,由于监控范围的原因,通常需要监控人员同时进行多路监控,往往会应接不暇。这就需要智能化视频监控。

而智能视频监控的核心技术,大范围监控场景下的视觉目标再识别技术也一直是计算机视觉领域的研究热点之一,基于多场景目标跟踪的视觉目标再识别也是吸引了很多学者的研究。多场景下的目标跟踪不仅能实现对公共场所行人的监控跟踪,同时,也为进一步的高级处理(如行为识别)提供了更有用的价值信息。传统的多场景目标跟踪算法主要分两步:第一步是先完成单场景下多目标的跟踪,得到每个单场景下各个目标的完整轨迹;第二步跨场景目标接力,通过场景间的时空信息实现场景间的轨迹连接,完成目标接力。从这两步可以看出,跨场景目标接力是以单场景的目标跟踪为基础的,其输入来源于单场景跟踪的结果。也就是说,当单场景跟踪结果达不到一定 标准时,跨场景接力效果直接会受到很大的影响。而现今的单场景目标跟踪算法在实际应用中都会长生大量的断裂的零碎轨迹和错误的干扰轨迹,都还没有达到可以用于跨场景接力的标准。这就使得跨场景接力算法的效果无法得到保证,最终导致实际场景中的多场景的目标跟踪难以实现。传统的跨场景接力算法都是假设单场景跟踪效果已经足够理想,以此作为算法输入,因而其在实际应用中接力效果相对较差。那么如何在单场景目标跟踪效果不好的情况下,提高跨场景接力准确率,从而完成基本的多场景目标跟踪以实现目标的再识别成为了一个急需解决的问题。

发明内容

本发明的目的是针对现有技术的缺陷,提供一种大范围优先的跨摄像机视觉目标再识别方法,解决大范围监控场景下的目标再识别问题,识别正确率高。

为实现上述目的,本发明提供了一种大范围优先的跨摄像机视觉目标再识别方法,所述方法包括:

步骤S1,获得单场景目标的初始轨迹;

步骤S2,计算每条轨迹的分段主颜色谱直方图特征,得到轨迹特征表达;

步骤S3,利用最小化不确定度的方法得到任意两条轨迹间匹配度的计算公式,从而得到任意两条轨迹间匹配度;

步骤S4,对所有轨迹采用最大后验概率的方法进行全局数据融合得到跨场景的跟踪结果。

进一步的,所述步骤S1中,对每一轨迹,所有帧的置信度的平均值被用来表示该轨迹的轨迹准确度:

其中,置信度α表示对于每一帧的跟踪结果,α<0.2表示跟踪目标丢失, ts和te分别为该轨迹的起始帧和结束帧;

最后形成的所有目标轨迹的集合为L={l1,l2,...,lN},N为轨迹综述,每一条轨迹li=[xi,ci,si,ti,ai],分别表示轨迹的位置,准确度,所属场景,时间和表观特征。

进一步的,所述步骤S2具体包括:

计算每帧中目标的颜色直方图,然后根据其H和S值,将颜色分为16*2个颜色,从中选取前n个颜色值作为该目标该帧的特征:

h={C1,C2,..,Cn}(2)

其中,Ci为前n种像素数之和占总像素数比例的90%以上的颜色,每一条轨迹的总特征为:

其中,mk为轨迹k的长度;

对总特征H中的所有特征hi,利用计算相互间的相似度Λ=Sim(hi,hj),通过其轨迹中每帧间的相似度信息找到运动周期,利用周期对原来轨迹特征H进行重新分段,通过下式得到总特征H中可能存在的周期性信息p:

利用周期性信息p对将轨迹重新进行均匀分段,至此得到轨迹的分段主颜色谱直方图特征:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201480000159.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top