[发明专利]一种视频序列图像中的运动目标跟踪方法有效
申请号: | 201510032727.2 | 申请日: | 2015-01-22 |
公开(公告)号: | CN104616318B | 公开(公告)日: | 2017-06-16 |
发明(设计)人: | 瞿中;辛宁;文倩云;赵栋梁;乔高元 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06T7/277 | 分类号: | G06T7/277 |
代理公司: | 重庆华科专利事务所50123 | 代理人: | 康海燕 |
地址: | 400065 *** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 视频 序列 图像 中的 运动 目标 跟踪 方法 | ||
技术领域
本发明涉及计算机图像处理技术,具体涉及对运动目标的跟踪。
背景技术
随着科技进步和社会发展,智能视频监控技术已经在工农业生产、国防建设、商业、交通以及家庭安防等领域得到了广泛的应用,作为传输与存储的载体。
智能视频监控序列图像中的运动目标的视觉分析主要是对含有运动目标的视频序列进行分析,包含运动目标检测、运动目标跟踪以及行为分析与判断三个过程。
检测与跟踪的难点在于图像是从三维空间到二维平面的投影,本身存在信息损失,而且运动目标并不是一个确定不变的信号,它在跟踪的过程中会发生旋转、放缩、位移等多种复杂的变化,同时背景图像的嘈杂、目标自身的频繁出现和消失、目标之间具有相似的外表、多目标的相互遮挡以及光照的突然变化等。这些是视频目标跟踪中经常遇到的难点,也是学者一直努力研究的热点。
目前对视频序列图像中运动目标跟踪的研究方法有很多种,比较有效的方法是Kalman滤波和粒子滤波跟踪算法。
Kalman滤波理论是Kalman在1960年提出的一个滤波理论,该理论突破了经典的Wiener滤波理论所表现出来的局限性,将处理的信息当作状态分量,通过把状态模型引入最优滤波理论,用状态方程描述系统的动态模型,利用观测方程来提供系统的状态测量信息,利用Hilbert空间中的映射理论解决最优状态估计问题,Kalman滤波理论对具有高斯分布噪声的线性特征系统可以得到系统状态的递归最小均方估计,可以用来处理服从高斯分布的运动情况。
基于视频序列图像重要性采样的蒙特卡洛方法早在20世纪50年代就被学者提出来应用于统计学里面,粒子滤波是一种基于蒙特卡洛方法和递推贝叶斯估计的统计滤波方法,算法的基本思想是根据系统状态向量的经验条件分布在状态空间利用一群带权重的随机样本,及样本粒子来表示系统的随机后验概率分布,根据测量不断调整粒子的权重和位置,通过调整后的粒子信息修正最初的经验条件分布。其实质使用由粒子及其权重组成的离散随机测度近似相关的概率分布,并且根据算法递推更新离散随机测度。当样本容量很大时,这种蒙特卡洛描述就近似于状态变量真实的后验概率密度函数。该技术适用于任何能用状态空间模型表示的非高斯背景的非线性随机系统,是一种很有效的非线性滤波技术,已经开始广泛的应用于金融数据分析,运动目标跟踪,计算机视觉等领域。
对于运动目标的跟踪,现有技术通常采用如下技术方案实施。
(1)Kalman滤波
Kalman滤波的前提是系统为线性,噪声呈高斯分布,后验概率也是高斯型的。该算法是通过反馈来进行估计,首先滤波器要做出一个反应,然后接收一个带有噪声的反馈值。所以,Kalman滤波算法主要分为两个主要阶段,一个为时间更新(预测),另一个为量测更新(修正),整个算法的进程为这两个过程的不断迭代,预测即为通过当前状态信息对下一个可能状态进行估计,修正是对反馈的结果做处理,通过对观测值和先验估计进行合并得到后验估计。
假设前一时刻k-1的后验概率分布p(xk-1|zk-1)是高斯型的,则动态系统可以表示为:
其中,Xk-1为k-1时刻的状态矢量,Φk,k-1为k-1到k时刻的一步状态转移矩阵,Bk-1是k-1时刻系统控制的作用矩阵,Uk-1是k-1时刻系统的确定性输入,Wk-1是k-1时刻的系统噪声矢量且为高斯型,其协方差为Qk,Γk-1为系统噪声作用矩阵,Yk是k时刻的状态观测向量,Hk是k时刻的观测矩阵,Vk是k时刻的观测噪声,其协方差为Rk。Kalman滤波方法要求Wk和Vk是互不相关的零均值白噪声序列。
(2)粒子滤波
基于蒙特卡洛方法(Monte Carlo methods)的粒子滤波(Particle Filter)算法利用粒子集来表示概率,可用于任何形式的状态空间模型。粒子滤波算法为顺序重要性采样算法(Sequential Importance Sampling),该算法的基本思想是在系统状态空间内生成大量的随机采样的样本集合(称之为样本粒子),当采样粒子的数量达到一定程度,这时蒙特卡罗方法就可以近似的描述系统的后验概率密度分布。
1)贝叶斯估计理论
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510032727.2/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序