[发明专利]一种泥页岩油气饱和度的计算模型有效
申请号: | 201510044729.3 | 申请日: | 2015-01-29 |
公开(公告)号: | CN104712329B | 公开(公告)日: | 2018-06-05 |
发明(设计)人: | 孙建孟;张晋言;赵建鹏;侯庆功;李绍霞;张文姣;闫伟超 | 申请(专利权)人: | 中国石油大学(华东);中石化胜利石油工程有限公司测井公司 |
主分类号: | E21B49/00 | 分类号: | E21B49/00;G06F19/00 |
代理公司: | 北京方圆嘉禾知识产权代理有限公司 11385 | 代理人: | 董芙蓉 |
地址: | 266580 山东省*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 页岩 饱和度 计算模型 页岩油气 种泥 等效物理模型 含油气饱和度 商业应用软件 数学模型公式 饱和度模型 含水饱和度 假设条件 孔隙结构 模型公式 模型验证 评价储层 数据拟合 岩电实验 应用效果 油田开发 润湿性 矿物 测井 应用 帮助 | ||
1.一种泥页岩油气饱和度的计算模型,首先根据泥页岩骨架矿物组分与孔隙类型给出泥页岩岩石体积物理模型,然后在适当的假设条件下,根据物理模型推导出泥页岩导电数学公式,随后给出公式中各项参数的求取方法,具体步骤如下:
A.建立等效物理模型:根据泥页岩骨架矿物类型和孔隙类型给出泥页岩岩石体积物理模型,将页岩分为两大系统和四大孔隙组分;步骤A所述的两大系统为有机质体积系统、非有机质体积系统;
B.给出假设条件:模型的提出是基于以下假设的:
(1)在泥页岩储层,骨架矿物除黄铁矿以外,有机质和其余骨架矿物是完全不导电的,在泥页岩储层中主要含有四种孔隙类型,分别为粘土孔隙、基质孔隙、微裂缝和有机孔隙;
(2)粘土孔隙、基质孔隙、微裂缝是亲水的水润湿、有机质孔隙是亲油气的油润湿,并且有机质孔隙中是100%含油气的,即油气饱和度为100%;粘土孔隙是粘土矿物之间的微细孔隙,与有机质孔隙不同,粘土孔隙表面表现为亲水性特征,对水分子吸附能力强;在构建游离气体积计算模型时,假设粘土孔隙100%含水,不含油气;
(3)泥页岩储层基质孔隙主要为残余原生孔隙和不稳定矿物溶蚀孔;
(4)岩石的电阻率主要受四部分影响:①100%含水的粘土;②导电矿物黄铁矿;③有机质;④基质孔隙和微裂隙空间的地层水;假设以上导电成分是并联导电的;
C.确定数学模型公式:根据泥页岩岩石体积物理模型,认为泥页岩电阻率主要受粘土、黄铁矿、有机质三部分影响:计算每一部分的电阻率然后并联起来,最终得到泥页岩饱和度导电模型;
构建如下页岩并联导电模型:
在实际处理过程中,通常认为有机质不导电,所以上式可以化简为:
变形可得:
则油气饱和度为:
式中,Rt表示页岩的电阻率,实际计算时可以用深探测电阻率代替;Rcl为100%含水粘土的电阻率,Vcl为粘土的体积百分数;Rpy为黄铁矿的电阻率,Vpy为黄铁矿的体积百分数;Vpy_cut是黄铁矿体积百分数截止值,只有当黄铁矿体积百分含量大于截止值时才能构成连通相,具有导电性;VTOC为有机质体积百分数,RTOC为有机质电阻率;φ为基质孔隙、微裂隙之和,Sw为以上两类孔隙的含水饱和度,Rw为地层水电阻率,a、b、m、n为模型参数;
D.模型中各参数的确定:①粘土含量、黄铁矿含量、有机质含量的计算:粘土含量Vcl由自然伽马测井或自然伽马能谱测井直接计算或者由测井曲线与岩心分析数据统计回归计算;黄铁矿含量Vpy由测井曲线与岩心分析统计回归直接计算;黄铁矿含量截止值Vpy_cut通过数字岩心模拟技术给出;随着黄铁矿含量的增大,岩心的电阻率有降低的趋势;但是在黄铁矿含量低的时候,电阻率几乎没有变化,这是由于黄铁矿分散在岩心中,只有在达到一定含量的时候,与孔隙相相连成为连续相,才对岩心电阻率产生影响,Vpy_cut为5%到6%之间;有机质VTOC由于密度低、声波传播速度低、含氢指数高以及不导电的特性,造成鲜明的测井响应特征,同时富有机质页岩还表现为高自然伽马特征,在自然伽马能谱测井响应上表现为高铀含量特征,用这些测井特征定量计算有机质含量,或者由测井曲线与岩心分析统计回归直接计算;
②粘土孔隙度、有机质孔隙度、无机质孔隙度的计算:粘土孔隙是粘土矿物之间的微细孔隙,是束缚水的主要赋存空间;粘土孔隙度的计算公式如下:
φcl=φtclVcl
式中φcl为粘土孔隙度,φtcl为纯粘土段孔隙度,Vcl由邻近泥岩测井响应确定;
利用扫描电镜测试技术能直观的确定有机孔隙大小及其分布,估算有机孔隙的面孔率;利用平均面孔率对测井计算的VTOC进行刻度,获得有机质孔隙度,其计算公式如下:
φTOC=aVTOC其中a为有机质面孔率,由扫描电镜分析确定;
页岩储层总孔隙度能通过岩心刻度测井的方法求的;通过实验测量的氦气孔隙度与孔隙度敏感测井曲线,有声波、密度或中子曲线建立关系,计算储层总孔隙度φt;
因此基质孔隙、微裂隙之和φ可以通过下式计算
φ=φt-φTOC-φcl;
E.岩电实验数据拟合模型公式参数a、b、m、n:利用岩电实验数据回归得出:当没有岩心实验数据时,采用默认值,一般认为a=b=1,对于微裂缝发育型,m值为1.1-1.5,n值为1;对于孔隙发育型,m值为1.5-2.5,n值为2;
F.模型验证:取a=b=1,m=1.5,n=1.3,φ=0.05,Rcl=40Ω,Rpy=0.5Ω,RW=0.12,Vcl=0.2,Vpy=0.05,TOC=0.05,ρTOC=1.2g/cm3,ρb=2.62g/cm3;利用如下公式计算了泥页岩导电性与含水饱和度之间的关系,
并与岩石物理实验结果进行对比,对比结果具有很好的吻合性。
2.根据权利要求1所述的一种泥页岩油气饱和度的计算模型,其特征在于:有机质体积系统包含有机质骨架VTOC和有机质孔隙φTOC;非有机质体积系统包括非有机质骨架Vnk和无机孔隙φnk,四大孔隙组分为有机质孔隙、粘土孔隙、微裂隙和基质孔隙。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东);中石化胜利石油工程有限公司测井公司,未经中国石油大学(华东);中石化胜利石油工程有限公司测井公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510044729.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种连续冷却的高温油品取样器
- 下一篇:侧向测井仪