[发明专利]一种城市道路交通事故风险实时预测方法有效
申请号: | 201510100505.X | 申请日: | 2015-03-06 |
公开(公告)号: | CN104732075B | 公开(公告)日: | 2017-07-07 |
发明(设计)人: | 蔡铭;周展鸿;陈韩杰 | 申请(专利权)人: | 中山大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26 |
代理公司: | 广州粤高专利商标代理有限公司44102 | 代理人: | 林丽明 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 城市道路 交通事故 风险 实时 预测 方法 | ||
1.一种城市道路交通事故风险实时预测方法,其特征在于:包括以下步骤:
S1.确定所需预测对象的类型,选择若干类型相同的城市道路作为观测对象组成观测集,所述城市道路的类型包括有:路段和交叉口;
S2.提取观测集中各个对象的几何线形数据、历史交通事故数据和历史天气状况数据,根据历史交通事故数据获得每起交通事故发生的精确时间,在获取交通事故发生的精确时间之后,再获取每起交通事故发生前n分钟的交通流基础数据和天气状况数据;
S3.对于每个观测对象,根据获取的每起交通事故发生前n分钟的交通流基础数据计算交通事故发生前n分钟浮动车车速的变异系数CVS,若所需预测对象的类型为路段,则还需要对交通事故发生时的交通流密度D进行求解,交通事故发生前n分钟浮动车车速的变异系数CVS以及交通事故发生时的交通流密度D均为交通流特征参数;
S4.对于每个观测对象,提取观测对象某一天的交通流基础数据,计算当天每n分钟的变异系数CVS,形成变异系数CVS累计分布图;同时还需提取观测对象的历史天气状况数据,通过历史天气状况数据分别计算出历史时段无雨天气、有雨天气两种天气类型的分布概率,若所需预测对象的类型为路段,则还需计算当天每n分钟的交通流密度D,形成交通流密度D累计分布图;
S5.将交通事故发生前n分钟浮动车车速的变异系数CVS转为分类变量,根据变异系数CVS累计分布图确定该分类变量的等级,并计算该等级在变异系数CVS累计分布图的分布概率p(CVS);
同时提取交通事故发生前n分钟的天气状况数据,通过该天气状况数据确定交通事故发生前n分钟的天气类型并将其转为分类变量,获得交通事故发生前n分钟的天气状况数据的分布概率p(W);
若所需预测对象的类型为路段,则还需要对交通事故发生时的交通流密度D进行上述处理,以确定交通事故发生时的交通流密度D这个分类变量的等级,以及该等级在交通流密度D累计分布图的分布概率p(D);
S6.在步骤S5的基础上,对观测行驶量EXP进行计算,若所需预测对象的类型为路段,观测行驶量EXP计算如下:
EXP=p(CVS)·p(D)·p(W)·AADT·L·T
其中AADT为路段的年平均日交通流量,L为路段的长度,L包含于提取的几何线形数据中;T为观测时间;若所需预测对象的类型为交叉口,则观测行驶量EXP包括交叉口主干道观测量EXPA和交叉口次干道观测量EXPB,计算公式如下:
EXPA=p(CVS)·p(W)·AADTA·TI
EXPB=p(CVS)·p(W)·AADTB·TI
其中AADTA和AADTB分别为交叉口主干道和次干道的年平均日交通流量,TI为观测时间;
S7.在S6的基础上,构建基于泊松分布的交通事故风险预测模型,表达式如下:
其中P(y)为路段或交叉口发生y次交通事故的概率;μ为交通事故风险指数;对于路段,μ的计算方式如下:
μ=EXPεexp(θ+λCVS(α)+λD(β)+λW(γ))(1)
其中θ为常数项,ε为EXP的指数,λCVS(α)、λD(β)、λW(γ)分别为交通事故发生前n分钟的变异系数CVS、交通事故发生时交通流密度D、交通事故发生前n分钟的天气状况数据的预测参数,ε、θ、λCVS(α)、λD(β)、λW(γ)均为待标定的参数;
对于交叉口,交通事故风险指数μ的计算方式如下:
其中ρ为常数项,κ、ν分别为EXPA、EXPB的指数,λCVS(α)和λW(γ)分别为交通事故发生前n分钟的变异系数CVS、交通事故发生前n分钟的天气状况数据的预测参数,xη表示交叉口的第η个静态变量,所述静态变量包括左转车道情况、右转车道情况,交叉口视距和信号相位数,静态变量包括于提取的几何线形数据中,λη为相应静态变量的系数;κ、ν、ρ、λCVS(α)、λW(γ)和λη均为待标定的参数;
S8.根据各个观测对象的几何线形数据、历史交通事故数据和历史天气状况数据,利用构建的风险预测模型通过极大似然法对待标定的参数进行标定;
S9.实时采集所需预测对象每n分钟的交通流基础数据和天气状况数据,根据天气状况数据确定预测对象每n分钟天气状况数据的分布概率,然后通过交通流基础数据计算获得实时交通流特征参数,确定实时交通流特征参数的等级以及该等级的分布概率之后,利用标定的式(1)或式(2)对所需预测对象的交通事故风险指数μ进行计算,获得μ之后将μ作为预测结果进行输出。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510100505.X/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种治疗腰痛的理疗保健腰带
- 下一篇:大电流高插入损耗EMI滤波器
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理