[发明专利]一种Al2O3掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法有效
申请号: | 201510106192.9 | 申请日: | 2015-03-11 |
公开(公告)号: | CN104821187B | 公开(公告)日: | 2017-12-15 |
发明(设计)人: | 王辉;潘小强;黄华伟;解怀英;尹昌耕;邱绍宇 | 申请(专利权)人: | 中国核动力研究设计院 |
主分类号: | G21C7/04 | 分类号: | G21C7/04;G21C21/18 |
代理公司: | 成都行之专利代理事务所(普通合伙)51220 | 代理人: | 谭新民 |
地址: | 610000 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 al sub 掺杂 uo 10 wt gd 可燃 毒物 及其 制备 方法 | ||
技术领域
本发明属于核工业燃料领域,具体地,涉及一种Al2O3掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法。
背景技术
国内外核动力堆中,特别是压水堆核电站堆芯中广泛采用UO2-Gd2O3可燃毒物燃料来控制反应堆初始反应性,实现展平堆芯功率分布,提高燃耗、延长换料周期,从而降低核电运行成本,提高运行的安全性和可靠性。目前核电厂用的UO2-Gd2O3可燃毒物的制备方法虽然和商用UO2芯块的制造工艺差不多,但是UO2-Gd2O3可燃毒物制备难度却远高于UO2芯块。在相同的烧结工艺条件下,氧化钆(Gd2O3)的加入不仅减小了UO2芯块的晶粒尺寸、降低了UO2芯块的致密度,同时还存在降低UO2热导率的问题,导致其在核反应堆运行期间释放更多的裂变气体发生辐照肿胀等为题,从而将会影响核反应堆运行的安全性和经济性。
UO2-Gd2O3可燃毒物中氧化钆的浓度范围一般为2-6wt%,主要原因有:1、因为目前核电站的燃料循环长度以及设计燃耗的限制,通过反应堆物理计算,得出Gd2O3的含量在2-6wt%之间;2、UO2-Gd2O3燃料的制备有技术难度,一般是Gd2O3含量越高,燃料芯块制备难度越大,在商用可燃毒物芯块制造上,也要求Gd2O3的含量不超过6wt%。
然而随着燃料循环长度的增加,UO2-Gd2O3可燃毒物中就需要更高浓度的氧化钆。但是,随着氧化钆浓度的提高将会进一步降低UO2-Gd2O3可燃毒物的烧结密度、晶粒尺寸和热导率。
发明内容
本发明所要解决的技术问题是提供一种高氧化钆浓度的UO2-Gd2O3可燃毒物,且该可燃毒物具有优良的烧结密度、晶粒尺寸和热导率。
本发明解决上述问题所采用的技术方案是:
一种Al2O3掺杂UO2-10wt%Gd2O3,由以下重量百分比的组分组成:
Al2O30-0.4wt%;Gd2O310wt%;余量为UO2。
本发明人在UO2-10wt%Gd2O3可燃毒物中掺杂Al2O3,一方面,掺杂Al2O3 的可燃毒物中的氧化钆浓度提高,能够加深核反应堆燃料燃耗、增加燃料循环长度,提高核反应堆运行的安全性和可靠性,另一方面,该可燃毒物中掺杂Al2O3,能够明显改善由于提高氧化钆浓度而带来的烧结密度、晶粒尺寸和热导率降低的现象。
而随着氧化钆浓度的提高,高于10wt%后,在制造上非常困难,同时给反应堆运行带来负面的中子经济性的影响。而本发明人发现在氧化钆浓度为10wt%时,掺杂Al2O3的可燃毒物的各项性能参数均较好,而且较易于制造。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国核动力研究设计院,未经中国核动力研究设计院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510106192.9/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法