[发明专利]基于多尺度变换与脉冲耦合神经网络的红外偏振融合方法有效
申请号: | 201510156098.4 | 申请日: | 2015-04-02 |
公开(公告)号: | CN104978724B | 公开(公告)日: | 2017-09-12 |
发明(设计)人: | 谢永杰;赵岩;张颂;张华良;唐佩佳;龙建乾 | 申请(专利权)人: | 中国人民解放军63655部队 |
主分类号: | G06T5/50 | 分类号: | G06T5/50 |
代理公司: | 西安智邦专利商标代理有限公司61211 | 代理人: | 倪金荣 |
地址: | 841700 新疆维吾*** | 国省代码: | 新疆;65 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 尺度 变换 脉冲 耦合 神经网络 红外 偏振 融合 方法 | ||
技术领域
本发明公开了一种基于多尺度变换与脉冲耦合神经网络的红外偏振融合方法,它主要用于红外辐射强度图像和偏振图像的融合。
背景技术
与传统的红外成像(红外辐射强度图像)相比,红外偏振成像技术既能探测目标景物的红外辐射强度信息,又能同时获取目标景物的红外辐射量在不同的偏振方向上的对比值,不仅保留了原有的辐射强度信息,并且增加了偏振信息,从而显著提高目标和自然背景之间的对比度,突显现出目标轮廓和细节,增强红外系统的探测识别能力。凭借其具有的优点,红外偏振成像技术将在海面油污检测、地物背景辨别、人造目标监测、医疗诊断、军事伪装目标辨识等方面具有很大的应用前景。而对红外偏振成像技术来说,红外辐射图像和偏振图像的融合方法对成像结果至关重要。
在一般的图像融合中,基于多尺度变换的图像融合方法被证明是一类行之有效的方法,这类方法主要有基于金字塔变换、小波变换、支持度变换、曲波(Curvelet)变换、轮廓波(Contourlet)变换的融合方法等。基于多尺度变换的图像融合算法主要原理是:首先利用多尺度变换方法对待融合的图像进行多尺度分解,然后再基于融合规则对各尺度上的分解图像进行融合,再将融合的分解图像进行重构,最终得到多尺度融合图像。
在现有的红外偏振图像融合方法中,主要是利用傅里叶变换、小波变换、支持度变换、拉普拉斯金字塔变换等对红外辐射图像和红外偏振图像进行融合。研究表明现有的红外偏振融合算法存在固有的边缘区域失真、对比度低的问题。这主要是因为,以小波变换代表的多尺度变换方法(包括金字塔变换)在分析图像的点状瞬态特征的奇异性时是最优的,但是在表示图像结构的线状或曲面奇异性时却不是最优的。因此,基于小波变换的图像融合不能充分地体现出图像中的方向边缘细节信息,容易导致融合后的图像产生细节成分模糊现象。偏振图像最大的价值在于它能表达出目标的边缘和纹理细节信息,因此在对红外偏振图像进行融合时,应该选择具有保护图像细节信息的多尺度变换算法,比如非下采样Contourlet变换(Non-Subsample Contourlet Transform,NSCT)算法,该算法不仅能捕获图像在各方向上的纹理细节信息,而且具有平移不变形,能有效降低配准误差对融合性能的影响,同时图像NSCT分解后得到的各子带图像与源图像具有相同的尺寸大小,从而有利于融合规则的制定和融合运算的实现,因此NSCT算法特别适合红外偏振图像的融合。
在基于多尺度分解的图像融合算法中,融合规则是另外一个至关重要的因素,直接决定着融合图像的性能,在现有的融合算法中,常规的融合规则可以分为三类:基于像素选取的融合规则、基于邻域窗口的融合规则和基于区域的融合规则。这些规则在同类图像的融合中表现出了良好的应用效果,然而应用于异类传感信息融合时却面临着许多困难,最主要的困难是目前尚没有统一的数学工具与方法可应用于异类传感信息融合。红外偏振图像和红外辐射图像由于成像机理不同,从本质上说属于异类图像,它们的融合属于异类图像融合,因此采用常规的融合规则对红外偏振图像进行融合并不合适。
异类图像融合时,不应该直接选取两幅图像的像素值进行融合,而应该根据某种评价函数对偏振图像和红外辐射图像待融合的像素点进行评价,依据图像评价结果进行融合处理。脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)模型,是通过模拟猫的大脑视觉皮层中同步脉冲发放现象建立起来的一个简化模型,在该模型中,相互连接的神经元之间存在着能量的传播,正是这种传播使得神经元能够以相似性集群,从而产生同步脉冲发放。在受到图像信号激励时,PCNN的输出脉冲序列(也叫做点火图)中包含有图像的特征信息,利用这些脉冲输出通常比使用原始图像更容易实现对图像的判断,因此利用图像的PCNN输出作为图像的评价将是一个很好的选择。然而,在PCNN模型中,很多参数需要根据经验设定,这就需要对其进行改进,提高PCNN模型的自适应能力。
发明内容
针对现有红外偏振融合算法存在的不足,本发明基于非下采样Conterlet变换(Non-Subsampled Conterlet Tranformation,NSCT)和自适应脉冲耦合神经网络算法(Adaptive Pulse Coupled Neural Network,APCNN)算法实现偏振图和红外辐射强度图像的二次融合。其中,NSCT算法将偏振图像细节在各个方向上得到了保护,而APCNN算法提高了异类图像融合的质量。第一次融合实现偏振角图像和偏振度图像的融合,得到复合偏振图像。第二次融合是将复合偏振图像与红外辐射图像进行融合,得到红外偏振融合图像。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军63655部队,未经中国人民解放军63655部队许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510156098.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种信息处理方法及电子设备
- 下一篇:基于变分正则化的大气扰动图像恢复方法