[发明专利]一种机器人的控制方法及机器人有效
申请号: | 201510163464.9 | 申请日: | 2015-04-08 |
公开(公告)号: | CN104742127B | 公开(公告)日: | 2017-06-13 |
发明(设计)人: | 李耀斌;曾雨权 | 申请(专利权)人: | 深圳市山龙智控有限公司 |
主分类号: | B25J9/16 | 分类号: | B25J9/16;G06F19/00 |
代理公司: | 深圳市科吉华烽知识产权事务所(普通合伙)44248 | 代理人: | 罗志伟 |
地址: | 518000 广东省深圳市*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 机器人 控制 方法 | ||
1.一种机器人的控制方法,其特征在于,包括以下步骤:
S1、运动学正、逆解,得到机械臂末端位姿在世界坐标系中的描述;
S2、位姿信息插补,规划机械臂末端的运行轨迹,实现机械臂末端在操作空间按照规划好的路径完成预定任务;
S3、关节空间运动规划,采用插补的形式约束机械臂末端的运行轨迹,实现精确的轨迹控制,关节空间运动规划是指,当机器臂末端需要从起始点以任意轨迹运动到终止点时,根据给定参数及起始点、终止点各关节角度,进行关节空间路径规划,返回下一时刻各关节期望角度;
在步骤S1中,采用几何解析的方法计算运动学逆解;
建立坐标系,设基座标原点X0,Y0,Z0,指向后三个关节交点的矢量P定义为
P=P6-d6*a
其中P6为第6个坐标系原点的坐标,d6是DH参数,a是坐标变换矩阵T6(nsa)中的一列;
将矢量P投影至X1Y1平面,得到J1的方程
可以得到J1的解,它存在两个解:J1=α+β;J1=α-β,
把矢量P投影至X2Y2平面,得到J2的方程
J2存在两个解:J2=α+β;J2=α-β,
把矢量P投影至X3Y3平面,得到J3的方程
J3有两个解J3=α-β;J3=α-β,
根据前三个关节角,解算关节4的值,把(X4,y4,Z4)投影至X3Y3平面,可得:
sin J4=-agX3
cos J4=agY3
其中,X3、Y3是旋转矩阵T3的前两列;
解得:
关节5的解:
坐标系(X5,Y5,Z5)投影至平面X4Z4,得:
sin J5=-agX4
cos J5=agY4
其中,X4、Y5是旋转矩阵T5的前两列;
解得:
同理,把关节6的坐标系(X6,Y6,Z6)投影至平面X5Y5得:
sin J6=ngY6
cos J6=sgY6
2.根据权利要求1所述的机器人的控制方法,其特征在于:在步骤S2中,按照参数设定的速度、加速度,对机器臂末端从当前位姿移动到指定位姿的运动进行插补。
3.根据权利要求1所述的机器人的控制方法,其特征在于:在步骤S2中,采用直线插补、圆弧插补、NURBS曲线直接插补进行位姿信息插补。
4.一种采用权1至权3中任一项控制方法进行控制的机器人,其特征在于:包括六自动度机械臂、控制器和示教盒,所述控制器分别与所述六自动度机械臂、示教盒连接。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市山龙智控有限公司,未经深圳市山龙智控有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510163464.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:翻译处理装置及程序
- 下一篇:一种阻燃尼龙6及其制备方法