[发明专利]基于光场数据分布的深度估计方法有效
申请号: | 201510251234.8 | 申请日: | 2015-05-15 |
公开(公告)号: | CN104899870B | 公开(公告)日: | 2017-08-25 |
发明(设计)人: | 金欣;许娅彤;戴琼海 | 申请(专利权)人: | 清华大学深圳研究生院 |
主分类号: | G06T7/50 | 分类号: | G06T7/50 |
代理公司: | 深圳市汇力通专利商标代理有限公司44257 | 代理人: | 李保明,张慧芳 |
地址: | 518055 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 数据 分布 深度 估计 方法 | ||
1.一种基于光场数据分布的深度估计方法,其特征在于,包括以下步骤:
S1、调整输入光场图像的像素分布,生成多个不同焦距的重聚焦光场图像;
S2、针对所述多个重聚焦光场图像,分别提取同一个宏像素的强度范围,进而选出最小强度范围对应的重聚焦光场图像,以该重聚焦光场图像的焦距作为该宏像素的场景深度;所述宏像素对应实际场景中的一点,所述宏像素的强度范围为该宏像素内所有点的强度值的变化范围;以及
重复所述步骤S2,获得所有宏像素的场景深度。
2.根据权利要求1所述的基于光场数据分布的深度估计方法,其特征在于,所述步骤S1中,采用点扩散函数调整输入光场图像的像素分布。
3.根据权利要求1所述的基于光场数据分布的深度估计方法,其特征在于,进一步还包括依据可信度模型对步骤S2获得的场景深度进行全局优化的步骤S3。
4.根据权利要求3所述的基于光场数据分布的深度估计方法,其特征在于,所述的依据可信度模型对步骤S2获得的场景深度进行全局优化的步骤S3包括:以步骤S2获得的场景深度作为初始输入,利用马尔科夫随机场进行优化,具体的优化方法包括:依据所述可信度模型对各点的深度评估,利用准确性高的深度估计修正不准确的深度,提升同质区域深度估计的一致性并保留深度边界。
5.根据权利要求3所述的基于光场数据分布的深度估计方法,其特征在于,所述可信度模型为多元可信度模型,该多元可信度模型包括用于衡量所述场景深度的准确性的第一部分,以及用于衡量所述场景深度在非边界区域的一致性与边界区域的突变性的第二部分。
6.根据权利要求5所述的基于光场数据分布的深度估计方法,其特征在于,
所述多元可信度模型的第一部分为C1(x,y),
其中,Rz*(x,y)和Rz’(x,y)分别是强度范围Rz(x,y)随场景深度的变化曲线的最小值点和极小值点,z*和z’为最小值点和极小值点对应的场景深度。
7.根据权利要求5所述的基于光场数据分布的深度估计方法,其特征在于,
所述多元可信度模型的第二部分以中心子孔径纹理图的梯度信息为基础;
所述深度估计方法进一步还包括分别获取所述多个重聚焦光场图像的中心子孔径纹理图的步骤,以及用获取的中心子孔径纹理图通过所述多元可信度模型的第二部分计算可信度的步骤。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学深圳研究生院,未经清华大学深圳研究生院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510251234.8/1.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置