[发明专利]Stewart并联机构杆长条件是否满足实际位形的判别方法有效
申请号: | 201510272537.8 | 申请日: | 2015-05-25 |
公开(公告)号: | CN104932536A | 公开(公告)日: | 2015-09-23 |
发明(设计)人: | 程世利;熊新;苏桂花;吴洪涛 | 申请(专利权)人: | 盐城工学院 |
主分类号: | G05D3/00 | 分类号: | G05D3/00 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 张弛 |
地址: | 224051 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | stewart 并联 机构 条件 是否 满足 实际 判别 方法 | ||
技术领域
本发明属于机械系统的运动学、动力学与控制研究领域,尤其是一种Stewart并联机构的基于运动学正解的工作空间搜索判别方法。
背景技术
Stewart并联机构(也称Stewart-Gough平台或Gough平台)由动、静两个平台和六根可伸缩的驱动杆组成;每根驱动杆两端通过两个球铰或者一个球铰和一个虎克铰分别与动、静两平台相连。工作中该机构本身的静平台静止不动,通过控制六根驱动杆的伸缩,可使动平台获得六个自由度,即三个平动自由度和三个转动自由度。与传统的串联机构相比,具备一些固有的优势,包括刚度质量比更大,基频更高,承受负载的能力相对较大;动态性能和稳定性更强等。自二十世纪中期以来成为机构学领域的研究热点,其运动学问题、奇异性分析、工作空间与灵巧性、动力学与控制等方面均得到深入而广泛的研究;现已广泛应用于运动模拟器、并联运动机床,微位移定位装置、工业机器人和医用机器人等方面。
虽然经过几十年的发展,Stewart并联机构无论是在理论研究还是工程应用方面都取得了长足的进步,成为并联机构的典型代表;但是时至今日仍然存在很多未解决的问题,尤其是被称为并联机构三大基本问题的运动学正解,奇异性和工作空间三个问题。其中,运动学正解问题是在六个可伸缩杆长度(输入)已知的情况下,求解动平台相对静平台的位置向量和姿态变量;在反馈控制、机构奇异性和工作空间分析中具有极其重要的作用,在众多学者的努力下,从解析与数值两个方面进行研究,发表了大量的文献。
由于运动学正解的难度大,在过去主要是基于运动学逆解来求解工作空间;随着运动学正解研究的深入,建立基于运动学正解的工作空间求解方法已经成为可能。然而,在运动学正解中并不是任意给定一组杆长(可伸缩杆的长度)都能找到一组或是几组实际位形与之对应,尤其是在进行工作空间的求解搜索时。如果一组杆长条件没有实际位形与之对应,则进行运动学正解就没有任何意义,反而耗费大量的运算时间,降低了求解的效率。因此,在进行运动学正解以及工作空间求解之前,需要对杆长条件进行判断;如果能够找到实际位形与之对应,则进行求解;反之,舍去,更新杆长条件,继续求解。这对Stewart并联机构无论是理论研究还是工程应用,都是需要解决的问题。
故,需要一种新的技术方案以解决上述问题。
发明内容
本发明的目的是针对现有技术存在的不足,提供一种可以提高工作空间求解效率Stewart并联机构杆长条件是否满足实际位形的判别方法。
为解决上述问题,本发明基于方向余弦矩阵的Stewart并联机构杆长条件是否满足实际位形的判别方法可采用如下技术方案:
一种基于方向余弦矩阵的Stewart并联机构杆长条件是否满足实际位形的判别方法,所述的Stewart并联机构包括动平台、静平台及连接动、静平台的6根并联的长度可伸缩的驱动杆,该方法包括如下步骤:
(1)、用方向余弦矩阵表示动平台转动,该方向余弦矩阵为正交矩阵;
(2)、建立姿态变量与杆长条件的关系式:
Stewart并联机构杆长条件变量与铰链点位置坐标参数表达的变量Cl:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于盐城工学院,未经盐城工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510272537.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种合成气洗涤塔液位控制系统及其控制方法
- 下一篇:水下机器人海洋搜索系统