[发明专利]一种负载型高岭土/Bi2O2CO3-BiPO4复合光催化剂及其制备方法在审
申请号: | 201510296197.2 | 申请日: | 2015-06-03 |
公开(公告)号: | CN104971754A | 公开(公告)日: | 2015-10-14 |
发明(设计)人: | 刘玉民;曹亚飞;吕华;光景 | 申请(专利权)人: | 河南师范大学 |
主分类号: | B01J27/236 | 分类号: | B01J27/236 |
代理公司: | 新乡市平原专利有限责任公司 41107 | 代理人: | 路宽 |
地址: | 453007 河*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 负载 高岭土 bi sub co bipo 复合 光催化剂 及其 制备 方法 | ||
技术领域
本发明属于无机环保光催化材料技术领域,具体涉及一种负载型高岭土/Bi2O2CO3-BiPO4复合光催化剂及其制备方法。
背景技术
近几十年来,环境问题已成为人类所面临最严重的问题,尤其是有毒、有害难降解有机污染物所引起的环境问题,已成为影响人类生存与发展的重大问题。半导体光催化技术能直接将有机污染物完全矿化为无毒、无害小分子,且降解过程无二次污染,是一种具有广阔应用前景的绿色环境治理技术。在半导体光催化技术中,制备高催化活性的光催化剂已成为目前广大科研工作者最为活跃的研究方向之一。
在众多的光催化材料中,铋系光催化剂以其独特的电子结构、优良的可见光吸收能力和较高的有机物降解能力引起了研究者的广泛关注。Bi2O2CO3是一种新型的光催化材料,其禁带宽度为3.4eV,当受到能量不低于其带隙的光照射时,会产生导带电子和价带空穴,具有较强的还原性和氧化性,能够直接将有机污染物降解成无毒无害的水和二氧化碳。但是单一的Bi2O2CO3载流子复合率高和量子效率较低等缺陷限制了其实用化进程。半导体复合是提高光催化效率的有效手段,通过半导体复合可以提高系统的电荷分离效果,扩展其光谱响应范围。
BiPO4是铋系氧化物中另外一种重要的光催化材料,禁带宽度为3.85eV,其独特的晶体结构和电子结构使其具有较宽的吸收带隙和较高的光催化活性。研究表明,Bi2O2CO3光催化剂的导带电势ECB=0.16eV,价带电势EVB=3.56eV,而BiPO4光催化剂的导带电势ECB=0.43eV,价带电势EVB=4.28eV。在Bi2O2CO3-BiPO4复合半导体中,Bi2O2CO3的导带电势更负,光生电子容易从能级低的Bi2O2CO3导带迁移到能级高的BiPO4导带上;同时,BiPO4的价带电势更正,光生空穴容易从能级高的BiPO4价带迁移到能级低的Bi2O2CO3价带上,从而提高光生电荷的分离效率,进而提高其光催化活性。
尽管Bi2O2CO3-BiPO4复合型光催剂有较高的光催化活性,但是Bi2O2CO3-BiPO4复合型光催化剂由于其粒径较小,在实际使用过程中容易团聚致其光催化活性降低。所以,在实际应用过程中如废水处理时,必须将Bi2O2CO3-BiPO4复合型光催剂负载于一定的载体上才能使用。高岭土是储量丰富的非金属矿物,是以高岭石族矿物为主要成分的土质岩石,具有强的离子吸附性和弱的阳离子交换性、强吸水性、易于分散悬浮于水中等特点,非常适合用来作为Bi2O2CO3-BiPO4复合型光催化剂的载体,然而目前关于负载型高岭土/Bi2O2CO3-BiPO4复合光催化剂尚未见相关报道。
发明内容
本发明解决的技术问题是提供了一种光催化活性高且易分离回收的负载型高岭土/Bi2O2CO3-BiPO4复合光催化剂。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南师范大学,未经河南师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510296197.2/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法