[发明专利]一种基于副本交换和局部增强策略的群体构象空间搜索方法有效

专利信息
申请号: 201510310103.2 申请日: 2015-06-08
公开(公告)号: CN105046101B 公开(公告)日: 2018-06-01
发明(设计)人: 张贵军;郝小虎;俞旭锋;周晓根;陈凯;徐东伟 申请(专利权)人: 浙江工业大学
主分类号: G06F19/16 分类号: G06F19/16
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省杭州市*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 构象 局部增强 空间搜索 副本 差分进化算法 算法 群体 交换 全局搜索能力 采样能力 局部构象 局部搜索 能量模型 片段组装 粗粒度 引入 采样 维数 收敛 种群 多样性 预测
【说明书】:

一种基于副本交换和局部增强策略的群体构象空间搜索方法,在差分进化算法框架下,采用Rosetta Score3粗粒度知识能量模型来有效降低构象空间搜索维数、提高算法的收敛速度;引入基于知识的片段组装技术可以有效提高预测精度;利用Monte Carlo算法良好的局部搜索性能对种群做局部增强,以得到更为优良的局部构象,结合差分进化算法较强的全局搜索能力,可以对构象空间进行更为有效的采样,副本交换策略的引入使得群体的多样性以及空间采样能力得到进一步增强。

技术领域

发明涉及生物信息学、计算机应用领域,尤其涉及的是一种基于副本交换和局部增强策略的群体构象空间搜索方法。

背景技术

蛋白质分子在生物细胞化学反应过程中起着至关重要的作用。它们的结构模型和生物活性状态对我们理解和治愈多种疾病有重要的意义。蛋白质只有折叠成特定的三维结构才能产生其特有的生物学功能。因此,要了解蛋白质的功能,就必须获得其三维空间结构。

蛋白质三级结构预测是生物信息学的一个重要任务。蛋白质构象优化问题现在面临最大的挑战是对极其复杂的蛋白质能量函数曲面进行搜索。蛋白质能量模型考虑了分子体系成键作用以及范德华力、静电、氢键、疏水等非成键作用,致使其形成的能量曲面极其粗糙,构象对应局部极小解数目随序列长度的增加呈指数增长。而蛋白质构象预测算法能够找到蛋白质稳定结构的机理是,大量的蛋白质亚稳定结构构成了低能量区域,所以能否找到蛋白质全局最稳定结构的关键是算法能够找到大量的蛋白质亚稳定结构,即增加算法的种群多样性。因此,针对更加精确的蛋白质力场模型,选取有效的构象空间优化算法,使新的蛋白质结构预测算法更具有普遍性和高效性成为生物信息学中蛋白质结构预测的焦点问题。

目前,蛋白质结构预测方法大致可以分为两类,基于模板的方法和不基于模板的方法。其中,不基于模板的从头预测(Ab-inito)方法应用最为广泛。它适用于同源性小于25%的大多数蛋白质,仅从序列产生全新结构,对蛋白质分子设计及蛋白质折叠的研究等具有重要意义。当前有以下几种比较成功的从头预测方法:张阳与Jeffrey Skolnick合作的TASSER(Threading/Assembly/Refinement)方法、David Baker及团队设计的Rosetta方法、Shehu等设计的FeLTr方法等。但是到目前还没有一种十分完善的方法来预测蛋白质的三维结构,即使获得了很好的预测结果,但也只是针对某些蛋白质而言的,目前主要的技术瓶颈在于两个方面,第一方面在于采样方法,现有技术对构象空间采样能力不强,另一方面在于构象更新方法,现有技术对构象的更新精度仍然不足。

因此,现有的构象空间搜索方法存在不足,需要改进。

发明内容

为了克服现有的蛋白质结构预测方法的构象空间搜索维数较高、收敛速度较慢、预测精度较低的不足,本发明基于差分进化群体算法,提出一种基于副本交换和局部增强策略的群体构象空间搜索方法,RELEDE:在差分进化算法框架下,采用Rosetta Score3粗粒度知识能量模型来有效降低构象空间搜索维数、提高算法的收敛速度;引入基于知识的片段组装技术可以有效提高预测精度;利用Monte Carlo算法良好的局部搜索性能对种群做局部增强,以得到更为优良的局部构象,结合差分进化算法较强的全局搜索能力,可以对构象空间进行更为有效的采样,副本交换策略的引入使得群体的多样性以及空间采样能力得到进一步增强。

本发明解决其技术问题所采用的技术方案是:

一种基于副本交换和局部增强策略的群体构象空间搜索方法,所述搜索方法包括以下步骤:

1)给定输入序列信息;

2)设置系统参数:种群大小popSize,算法的迭代次数T,交叉因子CR,片段的长度L,副本层数RE,副本层温度参数kT;

3)种群初始化:在每个副本层,由输入序列产生popSize个种群个体Pinit

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510310103.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top